Что такое прямые и косвенные измерения примеры. Виды и методы измерений

  • измерение сопротивления резисторов, соединённых треугольником. При этом измеряется значение сопротивления между вершинами. По результатам определяются сопротивления резисторов.
  • определение масс гирь набора гирь (1, 2, 2, 5) кг с использованием одной эталонной гири 1 кг и компаратора масс («весов», предназначенных для определения разности масс двух грузов). Компарируют, например:

Эталон с гирей 1 кг из набора; - эталон + гирю 1 кг из набора с гирей 2 кг из набора; - эталон + гирю 1 кг из набора с другой гирей 2 кг из набора; - гири 1 + 2 + 2 кг из набора с оставшейся гирей 5 кг из набора.

Напишите отзыв о статье "Виды измерений"

Отрывок, характеризующий Виды измерений

– Я это и сделаю, – сказал князь Андрей, отходя от карты.
– И о чем вы заботитесь, господа? – сказал Билибин, до сих пор с веселой улыбкой слушавший их разговор и теперь, видимо, собираясь пошутить. – Будет ли завтра победа или поражение, слава русского оружия застрахована. Кроме вашего Кутузова, нет ни одного русского начальника колонн. Начальники: Неrr general Wimpfen, le comte de Langeron, le prince de Lichtenstein, le prince de Hohenloe et enfin Prsch… prsch… et ainsi de suite, comme tous les noms polonais. [Вимпфен, граф Ланжерон, князь Лихтенштейн, Гогенлое и еще Пришпршипрш, как все польские имена.]
– Taisez vous, mauvaise langue, [Удержите ваше злоязычие.] – сказал Долгоруков. – Неправда, теперь уже два русских: Милорадович и Дохтуров, и был бы 3 й, граф Аракчеев, но у него нервы слабы.
– Однако Михаил Иларионович, я думаю, вышел, – сказал князь Андрей. – Желаю счастия и успеха, господа, – прибавил он и вышел, пожав руки Долгорукову и Бибилину.
Возвращаясь домой, князь Андрей не мог удержаться, чтобы не спросить молчаливо сидевшего подле него Кутузова, о том, что он думает о завтрашнем сражении?
Кутузов строго посмотрел на своего адъютанта и, помолчав, ответил:
– Я думаю, что сражение будет проиграно, и я так сказал графу Толстому и просил его передать это государю. Что же, ты думаешь, он мне ответил? Eh, mon cher general, je me mele de riz et des et cotelettes, melez vous des affaires de la guerre. [И, любезный генерал! Я занят рисом и котлетами, а вы занимайтесь военными делами.] Да… Вот что мне отвечали!

В 10 м часу вечера Вейротер с своими планами переехал на квартиру Кутузова, где и был назначен военный совет. Все начальники колонн были потребованы к главнокомандующему, и, за исключением князя Багратиона, который отказался приехать, все явились к назначенному часу.
Вейротер, бывший полным распорядителем предполагаемого сражения, представлял своею оживленностью и торопливостью резкую противоположность с недовольным и сонным Кутузовым, неохотно игравшим роль председателя и руководителя военного совета. Вейротер, очевидно, чувствовал себя во главе.движения, которое стало уже неудержимо. Он был, как запряженная лошадь, разбежавшаяся с возом под гору. Он ли вез, или его гнало, он не знал; но он несся во всю возможную быстроту, не имея времени уже обсуждать того, к чему поведет это движение. Вейротер в этот вечер был два раза для личного осмотра в цепи неприятеля и два раза у государей, русского и австрийского, для доклада и объяснений, и в своей канцелярии, где он диктовал немецкую диспозицию. Он, измученный, приехал теперь к Кутузову.
Он, видимо, так был занят, что забывал даже быть почтительным с главнокомандующим: он перебивал его, говорил быстро, неясно, не глядя в лицо собеседника, не отвечая на деланные ему вопросы, был испачкан грязью и имел вид жалкий, измученный, растерянный и вместе с тем самонадеянный и гордый.

Содержание статьи

ИЗМЕРЕНИЯ И ВЗВЕШИВАНИЕ. Измерения служат для получения точного, объективного и легко воспроизводимого описания физической величины. Не производя измерений, нельзя охарактеризовать физическую величину количественно. Чисто словесные определения – «низкая» или «высокая» температура, «низкое» или «высокое» напряжение – неадекватны, так как они не содержат сравнения с известными эталонами и, следовательно, отражают лишь субъективные мнения. При измерении физической величины ей приписывается некоторое численное значение.

Фундаментальные и производные измерения.

К фундаментальным измерениям относят те, на которых производится прямое сопоставление с первичными эталонами массы, длины и времени. (Недавно к ним добавили эталоны электрического заряда и температуры.) Так, длину измеряют с помощью линейки или кронциркуля, угол – посредством транспортира или теодолита, массу – используя равноплечные рычажные весы и т.д. Число, показывающее, сколько раз соответствующий эталон (или кратная ему единица) «укладывается» в измеряемой величине, и является фундаментальной мерой этой величины.

К производным измерениям относят те, в которых участвуют вторичные, или производные, физические единицы, такие, как площадь, объем, плотность, давление, скорость, ускорение, импульс и т.д. Измерение таких производных величин сопровождается математическими операциями с основными, или фундаментальными, единицами. Так, при измерении (определении) площади прямоугольника сначала измеряют основание и высоту и затем их перемножают. Плотность вещества определяют посредством деления его массы на объем (который, в свою очередь, является производной величиной). Вычисление средней скорости включает в себя измерения расстояния, преодоленного за единицу времени. При выполнении производных измерений используют, как правило, приборы, проградуированные непосредственно в терминах величин, подлежащих измерению, что исключает необходимость каких-либо математических вычислений. Таким образом, соответствующее математическое уравнение «содержится» в самом приборе.

Прямые и косвенные измерения.

В зависимости от способа получения количественных данных измерения разделяют на прямые и косвенные. При прямых измерениях измеряемая величина выражается в тех же единицах, что и эталон, используемый для измерений. Например, на равноплечных рычажных весах неизвестную массу сравнивают с эталонной, а линейкой определяют неизвестную длину в терминах эталонной. С другой стороны, результатом измерения температуры с помощью градусника оказывается высота столба жидкости, заполняющей стеклянную трубку. В этом косвенном методе измерения температуры предполагают существование линейной зависимости между приращениями температуры и высоты столбика ртути или спирта в термометре.

Косвенные измерения осуществляются с помощью датчиков, которые сами по себе не являются измерительными инструментами, а выполняют роль преобразователей информации. Например, пьезоэлектрический датчик из титаната бария генерирует электрическое напряжение, изменяя свои размеры под действием механической нагрузки. Следовательно, измеряя это напряжение, можно определить такие чисто механические величины, как деформации, моменты или ускорения. Другой тензометрический датчик преобразует механическое перемещение (удлинение, сокращение или поворот) в изменение электрического сопротивления. Значит, измеряя последнюю величину, можно косвенно, но с высокой точностью определить такие механические характеристики, как силы растяжения – сжатия или момент кручения. Электрическое сопротивление фоторезистора из сернистого кадмия уменьшается, когда датчик облучают светом. Следовательно, чтобы определить величину освещенности, воспринимаемой датчиком, необходимо только измерить его сопротивление. Некоторые чувствительные к измерениям температуры оксиды металлов, называемые терморезисторами, характеризуются заметными изменениями электрического сопротивления при изменении температуры. В этом случае также достаточно измерить электрическое сопротивление, чтобы определить значение температуры. Один из видов расходомеров позволяет преобразовать в расход потока линейно связанное с ним число оборотов ротора, вращающегося в постоянном магнитном поле.

Линейные и нелинейные измерительные устройства.

Наиболее простым типом измерительного датчика является «линейное» устройство, в котором выходная информация (показание прибора) прямо пропорциональна воспринимаемой прибором входной информации. В качестве примера рассмотрим эмиссионный фотоэлемент (с внешним фотоэффектом), который состоит из двух электродов, изготовленных из чистых металлов (один из них является светочувствительным). Электроды заключены в стеклянную вакуумную трубку и подсоединены к источнику постоянного тока, разность потенциалов которого можно варьировать. К этому устройству подсоединяется микроамперметр, проградуированный в единицах освещенности. Такое комбинированное устройство представляет собой фотоэлектрической фотометр, для которого измеряемой величиной является свет, а выходной – электрический ток. Чем выше освещенность (при постоянной разности потенциалов на электродах), тем большее число электронов испускает фотокатод (отрицательный электрод). Рабочая характеристика этого прибора является существенно линейной в широком диапазоне значений освещенности, и поэтому он имеет равномерную шкалу.

Примером существенно нелинейного прибора является омметр, служащий для измерения электрического сопротивления в собственных единицах (Ом). Прибор содержит высокочувствительный датчик электрического тока с миниатюрным элементом питания и защитный резистор, которые соединяются последовательно. Так как кривая зависимости тока от сопротивления при постоянном напряжении является гиперболой, то и связь между входной и выходной величинами у этого прибора существенно нелинейна. Шкала такого прибора будет «измельчаться» в диапазоне больших сопротивлений (малых токов). Этот прибор необходимо тщательно проградуировать, прежде чем он будет пригоден для измерения неизвестных сопротивлений.

Другим примером нелинейного устройства измерительного является термоэлектрический датчик (термопара). В электрической цепи, составленной из двух различных металлов, стыки (спаи) которых поддерживают при различных температурах, создается разность потенциалов, которая тем больше, чем выше температура т.н. «горячего» спая. Однако, если исследовать зависимость разности потенциалов от температуры для пары металлов железо – медь, обнаружится, что разность потенциалов растет практически линейно только до температуры 150° С; она достигает максимума при 200° С и затем уменьшается, обращаясь в нуль при температуре около 600° С. Этот измерительный инструмент также требует тщательной градуировки (при нескольких известных значениях температуры и разности потенциалов), для того чтобы можно было адекватно использовать его нелинейную характеристику.

Погрешности измерений.

Систематические погрешности.

Идеальных измерений не существует. Даже если измерительная аппаратура сконструирована и изготовлена наилучшим образом, все равно она будет вносить определенные систематические (постоянные) погрешности. К систематическим относятся погрешности неправильной установки начала отсчета, неправильной градуировки шкалы прибора, погрешности, вызванные неточностью шага ходового винта или неравенством длин плеч весов, погрешности, обусловленные люфтами редукторов, и т.д. Так, если измерять некоторую длину с помощью метрового прутка, который на самом деле немного меньше метра, все измерения этой длины будут содержать систематическую погрешность. Можно примириться с этой погрешностью или же попытаться уменьшить ее, используя более совершенное измерительное устройство. Однако в случае редукторов, например, уменьшение люфта в зацеплении до минимального значения для уменьшения систематической погрешности измерений может привести к увеличению сил трения до таких значений, что редуктор не сможет работать.

Случайные погрешности.

Существуют также случайные погрешности. К ним относятся, например, погрешности, вносимые вибрациями в лабораторных исследованиях, переходными процессами в электрических цепях или тепловыми шумами в вакуумных трубках. Такие погрешности нельзя предсказать заранее и трудно оценить теоретически. Уменьшение влияния случайных погрешностей измерений достигается многократными измерениями и (после отбрасывания ошибочных результатов) вычислением среднего значения.

Ошибки наблюдателя.

Ошибки наблюдателя, или субъективные погрешности, возникают вследствие ошибок в оценках ситуации наблюдателем. Запаздывание с включением или остановкой секундомера, тенденция к завышению или занижению результатов, погрешности при интерпретации шкал и отклонений стрелок, ошибки ручных расчетов и т.д. – все это примеры ошибок наблюдателя, которые влияют на точность определения измеряемых величин. Так как результаты измерений одного и того же значения величины обычно группируются около некоторого центрального значения, относительно которого отклонения как в одну, так и в другую сторону приблизительно одинаковы, то по этим результатам необходимо определить среднее значение, вероятную погрешность единичного измерения и вероятную погрешность вычисленного среднего значения. Результаты измерений, которые слишком далеко отклоняются от среднего значения, признаются ошибочными и отбрасываются до процедуры осреднения.

Погрешности, обусловленные внешними влияниями.

При работе с вторичными, или «рабочими», эталонами, а также с другими измерительными приборами могут возникать некоторые специфические погрешности, обусловленные внешними влияниями. (Такие погрешности тщательно контролируются и сводятся до минимума в первичных эталонах, которые хранятся со всеми предосторожностями, обеспечивающими их неизменность.) Так, на величину имеющегося в лаборатории эталона сопротивления могут оказывать влияние изменения влажности воздуха или частоты электрического тока, проходящего через него, механические напряжения, приложенные к резистору. Измерения с использованием вторичного эталона емкости могут содержать высокочастотные погрешности, отклонения, связанные с диэлектрическими потерями и сопротивлением утечки, и погрешности, обусловленные изменением температуры. К приборным погрешностям относятся запаздывание и гистерезисные явления у барометров-анероидов, чрезмерно медленное реагирование некоторых манометров Бурдона и т.д. Экспериментатор должен знать о тех конкретных погрешностях, которым подвержены его приборы, и принимать соответствующие меры, чтобы скорректировать или уменьшить влияние этих погрешностей посредством улучшения методики измерений или усовершенствования конструкции прибора.

Косвенными измерениями называют такие измерения, при которых искомое значение величины находят расчетом на основе измерения других величин, связанных с измеряемой величиной известной зависимостью

А = f(a 1 , …, a m). (1)

Результатом косвенного измерения является оценка величины А, которую находят подстановкой в формулу (1) оценок аргументов а i .

Поскольку каждый из аргументов а i измеряется с некоторой погрешностью, то задача оценивания погрешности результата сводится к суммированию погрешностей измерения аргументов. Однако особенность косвенных измерений состоит в том, что вклад отдельных погрешностей измерения аргументов в погрешность результата зависит от вида функции A .

Для оценки погрешностей важное значение имеет подразделение косвенных измерений на линейные и нелинейные косвенные измерения.

При линейных косвенных измерениях уравнение измерений имеет вид

где b i - постоянные коэффициенты при аргументах а i .

Любые другие функциональные зависимости относятся к нелинейным косвенным измерениям.

Результат линейного косвенного измерения вычисляют по формуле (2), подставляя в нее измеренные значения аргументов.

Погрешности измерения аргументов могут быть заданы своими границами Dа i либо доверительными границами Dа(P) i с доверительными вероятностями Р i .

При малом числе аргументов (меньше пяти) простая оценка погрешности результата DA получается суммированием предельных погрешностей (без учета знака), т.е. подстановкой границ Dа 1 , Dа 2 , ... , Dа m в выражение

Dа 1 + Dа 2 + ... + Dа m . (3)

Однако эта оценка является излишне завышенной, поскольку такое суммирование фактически означает, что погрешности измерения всех аргументов одновременно имеют максимальное значение и совпадают по знаку. Вероятность такого совпадения исключительно мала и практически равна нулю.

Для нахождения более реалистичной оценки переходят к статистическому суммированию погрешностей аргументов.

Нелинейные косвенные измерения характеризуются тем, что результаты измерений аргументов подвергаются функциональным преобразованиям. Но, как показано в теории вероятностей, любые, даже простейшие функциональные преобразования случайных величин, приводят к изменению законов их распределения.

При сложной функции (1) и, в особенности, если это функция нескольких аргументов, отыскание закона распределения погрешности результата связано со значительными математическими трудностями. Поэтому при нелинейных косвенных измерениях не используют интервальные оценки погрешности результата, ограничиваясь приближенной верхней оценкой ее границ. В основе приближенного оценивания погрешности нелинейных косвенных измерений лежит линеаризация функции (1) и дальнейшая обработка результатов аналогично тому, как расчет выполняется при линейных измерениях.

В этом случае выражение для полного дифференциала функции А будет иметь вид:

Как следует из определения, полный дифференциал функции – это приращение функции, вызванное малыми приращениями ее аргументов.

Учитывая, что погрешности измерения аргументов всегда являются малыми величинами по сравнению с номинальными значениями аргументов, можно заменить в (4) дифференциалы аргументов da i на погрешности измерений Dа i , а дифференциал функции dA - на погрешность результата измерения DA . Тогда получим

Проанализировав зависимость (5), можно сформулировать ряд относительно простых правил оценивания погрешности результата при косвенных измерениях.

Правило 1. Погрешности в суммах и разностях.

Если а 1 и а 2 измерены с погрешностями Dа 1 и Dа 2 и измеренные значения используются для вычисления суммы или разности А = Dа 1 ± Dа 2 , то суммируются абсолютные погрешности (без учета знака).

Прямыми измерениями называют такие измерения, которые получены непосредственно с помощью измерительного прибора. К прямым измерениям можно отнести измерение длины линейкой, штангенциркулем, измерение напряжения вольтметром, измерение температуры термометром и т.п. На результатах прямых измерений могут оказать влияние различные факторы. Поэтому погрешность измерений имеет различный вид, т.е. имеет место погрешность прибора, систематические и случайные погрешности, ошибки округления при снятии отсчета со шкалы прибора, промахи. В связи с этим важно выявить в каждом конкретном эксперименте, какая из ошибок измерения является наибольшей, и если окажется, что одна из них на порядок превышает все остальные, то последними погрешностями можно пренебречь.

Если же все учитываемые погрешности по порядку величины одинаковы, то необходимо оценить совместный эффект нескольких различных погрешностей. В общем случае суммарная ошибка подсчитывается по формуле:

где  – случайная погрешность,  – погрешность прибора, – погрешность округления.

В большинстве экспериментальных исследований физическая величина измеряется не прямо, а через другие величины, которые в свою очередь определяются прямыми измерениями. В этих случаях измеряемая физическая величина определяется через прямо измеренные величины посредством формул. Такие измерения называются косвенными. На языке математики это означает, что искомая физическая величина f связана с другими величинами х 1, х 2, х 3, ,. х n функциональной зависимостью, т.е

F = f (x 1 , x 2 ,….,х n )

Примером таких зависимостей может служить объем шара

.

В данном случае косвенно измеряемой величиной является V - шара, которая определится при прямом измерении радиуса шара R. Данная измеряемая величина V является функцией одной переменной.

Другим примером может быть плотность твердого тела

. (8)

Здесь – является косвенно измеряемая величина, которая определяется прямым измерением массы тела m и косвенной величиной V . Данная измеряемая величина является функцией двух переменных, т.е.

= (m, V)

Теория погрешностей показывает, что погрешность функции оценивается суммой погрешностей всех аргументов. Погрешность функции будет тем меньше, чем меньше погрешностей её аргументов.

4.Построение графиков по экспериментальным измерениям.

Существенным моментом экспериментального исследования является построение графиков. При построении графиков, прежде всего необходимо выбрать систему координат. Наиболее распространенной является прямоугольная система координат с координатной сеткой, образованной равностоящими друг от друга параллельными прямыми (например, миллиметровая бумага). На осях координат через определенные промежутки наносятся деления в определенном масштабе для функции и аргумента.

В лабораторных работах при изучении физических явлений приходится учитывать изменения одних величин в зависимости от изменения других. Например: при рассмотрении движения тела устанавливается функциональная зависимость пройденного пути от времени; при изучении электросопротивления проводника от температуры. Можно привести еще множество примеров.

Переменную величину У называют функцией другой переменной величины Х (аргумент), если каждому значение У будет соответствовать вполне определенное значение величины Х , то можно записать зависимость функции в виде У = У(Х) .

Из определения функции следует, что для её задания необходимо указать два множества чисел (значений аргумента Х и функции У ), а так же закон взаимозависимости и соответствия между ними (Х и У ). Экспериментально функция может быть задана четырьмя способами:

    Таблицей; 2. Аналитически, в виде формулы; 3. Графически; 4. Словесно.

Например: 1. Табличный способ задания функции –зависимости величины постоянного тока I от величины напряжения U , т.е. I = f (U ) .

Таблица 2

2.Аналитический способ задания функции устанавливается формулой, при помощи которой по заданным (известным) значениям аргумента можно определить соответствующие значения функции. Например, функциональная зависимость, приведенная в таблице 2, может быть записана формулой:

(9)

3.Графический способ задания функции.

Графиком функции I = f (U ) в декартовой системе координат называется геометрическое место точек, построенное по числовым значениям координатной точки аргумента и функции.

На рис. 1 построен график зависимости I = f (U ) , заданный таблицей.

Точки, найденные на опыте и наносимые на график, отмечаются отчетливо в виде кружочков, крестиков. На графике для каждой построенной точки необходимо указывать погрешности в виде «молоточков» (см. рис 1). Размеры этих «молоточков» должны быть равны удвоенному значению абсолютных ошибок функции и аргумента.

Масштабы графиков надо выбирать так, чтобы наименьшее расстояние, отсчитываемое по графику, было бы не меньше наибольшей абсолютной погрешности измерений. Однако такой выбор масштаба не всегда удобен. В некоторых случаях удобней взять по одной из осей несколько больший или меньший масштаб.

Если исследуемый интервал значений аргумента или функции отстоит от начала координат на величину, сравнимую с величиной самого интервала, то целесообразно перенести начало координат в точку, близкую к началу исследуемого интервала, как по оси абсцисс, так и по оси ординат.

Проведение кривой (т.е. соединение экспериментальных точек) через точки обычно осуществляется в соответствии с идеями метода наименьших квадратов. В теории вероятностей показано, что наилучшим приближением к экспериментальным точкам будет такая кривая (или прямая), для которой сумма наименьших квадратов отклонений по вертикали от точки до кривой будет минимальной.

Нанесенные на координатную бумагу точки соединяют плавной кривой, причем кривая должна проходить возможно ближе ко всем экспериментальным точкам. Проводить кривую следует так, чтобы она лежала возможно ближе к точкам не превышаемые погрешности и чтобы по обе стороны кривой оказывалось приблизительно равное их количество (см. рис. 2).

Если при построении кривой одна или несколько точек выходят за пределы области допустимых значений (см. рис. 2, точки А и В ), то кривую проводят по остальным точкам, а выпавшие точки А и В как промахи не берут в учет. Затем проводят повторные измерения в этой области (точки А и В ) и устанавливается причина такого отклонения (либо это промах или законное нарушение найденной зависимости).

Если исследуемая, экспериментально построенная функция обнаруживает «особые» точки, (например, точки экстремума, перегиба, разрыва и т.д.). То увеличивается число экспериментов при малых значениях шага (аргумента) в области особых точек.

Метрологией называется наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Измерением называется нахождение значения физической величины опытным путем с помощью специальных технических средств . Результатом измерения является количественная характеристика физической величины в виде числа единиц измеряемой величины и погрешность, с которой получено данное число.

Виды измерений. В зависимости от способа получения числового значения измеряемой величины измерения делятся на прямые, косвенные и совокупные измерения.

Прямыми называются измерения, при которых искомое значение величины получают из опытных данных. При прямых измерениях экспериментальные операции производятся над самой измеряемой величиной. Числовое значение измеряемой величины получают в экспериментальном сравнении с мерой или по показаниям приборов. Например, измерение тока амперметром, напряжения вольтметром, температуры термометром, массы на весах.

Косвенными называют такие измерения, при которых числовое значение измеряемой величины определяется по известной функциональной зависимости через другие величины, которые можно прямо измерить. При косвенных измерениях числовое значение измеряемой величины получают с участием оператора на основе прямых измерений – решением одного уравнения. К косвенным измерениям прибегают в тех случаях, когда неудобно или невозможно осуществить автоматическое вычисление известной зависимости между одной или несколькими входными величинами и измеряемой величиной. Например, мощность в цепях постоянного тока определяет оператор, умножая напряжение на ток, измеренные прямым измерением с помощью амперметра и вольтметра.

Отклонение результата измерения от истинного значения измеряемой величины называют погрешностью измерения .

Абсолютная погрешность измерения равна разности между результатом измерения и истинным значением измеряемой величины : .

Относительная погрешность измерения представляет собой отношение абсолютной погрешности измерения к истинному значению измеряемой величины. Обычно относительная погрешность выражается в процентах %.

25. Основные понятия и определения: информация, алгоритм, программа, команда, данные, технические устройства.

Информация - от латинского слова "information", что означает сведения, разъяснения, изложение.

Применительно к компьютерной обработке данных под информацией понимают некоторую последовательность символических обозначений (букв, цифр, закодированных графических образов и звуков и т.п.), несущую смысловую нагрузку и представленную в понятном компьютеру виде. Каждый новый символ в такой последовательности символов увеличивает информационный объём сообщения.

Алгоритм - последовательность чётко определенных действий, выполнение которых ведёт к решению задачи. Алгоритм, записанный на языке машины, есть программа решения задачи.

Свойства алгоритмов: дискретность, понятность, результативность, определенность, массовость.

Программа - последовательность действий, инструкций, предписаний для некоторого вычислительного устройства; файл, содержащий эту последовательность действий.

Команда - это указание компьютерной программе действовать как некий интерпретатор для решения задачи. В более общем случае, команда - это указание некоему интерфейсу командной строки.

Данные - информация, представленная в формализованном виде, что обеспечивает возможность ее хранения, обработки и передачи.

Технические устройства (средства информатизации) – это совокупность систем, машин, приборов, механизмов, устройств и прочих видов оборудования, предназначенных для автоматизации различных технологических процессов информатики, причем таких, выходным продуктом которых является именно информация (сведения, знания) или данные, используемые для удовлетворения информационных потребностей в разных областях предметной деятельности общества.

Поделиться