Какие измерения являются прямыми. Прямые и косвенные измерения в физике

Прямые измерения

Прямое измерение

Прямое измерение - это измерение, при котором искомое значение физической величины находится непосредственно из опытных данных в результате сравнения измеряемой величины с эталонами.

  • измерение длины линейкой .
  • измерение электрического напряжения вольтметром .

Косвенное измерение

Косвенное измерение - измерение, при котором искомое значение величины находится на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.

  • сопротивление резистора находим на основании закона Ома подстановкой значений силы тока и напряжения, получаемых в результате прямых измерений.

Совместное измерение

Совместное измерение - одновременное измерение нескольких неодноименных величин, для нахождения зависимости между ними. При этом решается система уравнений.

  • определение зависимости сопротивления от температуры . При этом измеряются неодноименные величины, по результатам измерений определяется зависимость.

Совокупное измерение

Совокупное измерение - одновременное измерение нескольких одноименных величин, при котором искомые значения величин находятся решением системы уравнений, состоящих из результирующих прямых измерений различных сочетаний этих величин.

  • измерение сопротивления резисторов, соединённых треугольником. При этом измеряется значение сопротивления между вершинами. По результатам определяются сопротивления резисторов.

Wikimedia Foundation . 2010 .

Смотреть что такое "Прямые измерения" в других словарях:

    ПРЯМЫЕ ИЗМЕРЕНИЯ - – измерения, при которых мера или прибор применяются непосредственно для измерения данной величины … Современный образовательный процесс: основные понятия и термины

    Прямые измерения изменения коэффициента масштабного преобразования ПМП (дифференциального затухания переменного аттенюатора) - Измерение отношения мощностей на выходе ПМП (переменного аттенюатора) с помощью ИО при идеально стабильном генераторе 1 генератор; 2 ПМП; 3 ИО Источник …

    Прямые измерения коэффициента масштабного преобразования ПМФ (коэффициента передачи К П M - Измерение с помощью ВПМ отношения мощностей на выходе идеально стабильного генератора при отсутствии (P1) и при наличии (Р2) между ними ПМФ (калиброванного аттенюатора) 1 генератор; 2 ПМФ (аттенюатор); 3 ВПМ; Источник … Словарь-справочник терминов нормативно-технической документации

    Прямые измерения мощности (или напряжения) ВПМ (или вольтметром) - 1 генератор; 2 ВПМ или вольтметр Источник … Словарь-справочник терминов нормативно-технической документации

    Измерения служат для получения точного, объективного и легко воспроизводимого описания физической величины. Не производя измерений, нельзя охарактеризовать физическую величину количественно. Чисто словесные определения низкая или высокая… … Энциклопедия Кольера

    ГОСТ Р 8.736-2011: Государственная система обеспечения единства измерений. Измерения прямые многократные. Методы обработки результатов измерений. Основные положения - Терминология ГОСТ Р 8.736 2011: Государственная система обеспечения единства измерений. Измерения прямые многократные. Методы обработки результатов измерений. Основные положения оригинал документа: 3.11 грубая погрешность измерения: Погрешность… … Словарь-справочник терминов нормативно-технической документации

    Погрешность измерения - разность между измеренным и истинным или заданным значением параметра. Источник: НПБ 168 97*: Карабин пожарный. Общие технические требования. Методы испытаний 3.11 погрешность измерения: Отклонение результата измерения от действительного значения … Словарь-справочник терминов нормативно-технической документации

    результат измерения - 3.5 результат измерения: Значение параметра, полученное после проведения измерения. Источник: ГОСТ Р 52205 2004: Угли каменные. Метод спектрометрического определения генетических и технологических параметров … Словарь-справочник терминов нормативно-технической документации

    результат измерения физической величины; результат измерения; результат - результат измерения физической величины; результат измерения; результат: Значение величины, полученное путем ее измерения. [Рекомендации по межгосударственной стандартизации , статья 8.1] Источник … Словарь-справочник терминов нормативно-технической документации

    грубая погрешность измерения - 3.11 грубая погрешность измерения: Погрешность измерения, существенно превышающая зависящие от объективных условий измерений значения систематической и случайной погрешностей. Источник … Словарь-справочник терминов нормативно-технической документации

Книги

  • Методы и средства измерения скорости звука в море , И. И. Микушин , Г. Н. Серавин , Книга содержит систематизированное описание современных методов и судовых средств измерения скорости звука в морской воде. В ней подробно рассмотрены прямые методы измерения скорости звука -… Категория: Научная и техническая литература Издатель: Судостроение , Производитель:

По способу получения значений физической величины измерения могут быть прямыми, косвенными, совокупными и совместными, каждое из которых проводится абсолютным и относительным методами (см. п. 3.2.).

Рис. 3. Классификация видов измерений

Прямое измерение – измерение, при котором искомое значение величины находят непосредственно из опытных данных. Примерами прямых измерений являются определения длины с помощью линейных мер или температуры термометром. Прямые измерения составляют основу более сложных косвенных измерений.

Косвенное измерение – измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, полученными прямыми измерениями, например, тригонометрические методы измерения углов, при которых острый угол прямого треугольника определяют по измеренным длинам катетов и гипотенузы или измерение среднего диаметра резьбы методом трех проволочек или, мощности электрической цепи по измеренным вольтметром напряжению и амперметром силе тока, используя известную зависимость. Косвенные измерения в ряде случаев позволяют получить более точные результаты, чем прямые измерения. Например, погрешности прямых измерений углов угломерами на порядок выше погрешностей косвенных измерений углов с помощью синусных линеек.

Совместными называют производимые одновременно измерения двух или нескольких разноименных величин. Целью этих измерений является нахождение функциональной связи между величинами.

Пример 1. Построение градуировочной характеристики y = f(x) измерительного преобразователя, когда одновременно измеряются наборы значений:

X 1 , X 2 , X 3 , …, X i , …,X n

Y 1 , Y 2 , Y 3 , …, Y i , …,Y n

Пример 2 . Определение температурного коэффициента сопротивления путем одновременного измерения сопротивления R и температуры t , а затем определение зависимости a(t) = DR/Dt :

R 1 , R 2 , …, R i , …, R n

t 1 , t 2 , …, t i , …, t n

Совокупные измерения осуществляются путем одновременного измерения нескольких одноименных величин, при которых искомое значение находят решением системы уравнений, получаемых в результате прямых измерений различных сочетаний этих величин.

Пример: значение массы отдельных гирь набора определяют по известному значению массы одной из гирь и по результатам измерений (сравнений) масс различных сочетаний гирь.



Имеются гири массами m 1 , m 2 , m 3 .

Масса первой гири определится следующим образом:

Масса второй гири определится как разность массы первой и второй гирь М 1,2 и измеренной массы первой гири :

Масса третьей гири определится как разность массы первой, второй и третьей гирь (M 1,2,3 ) и измеренных масс первой и второй гирь ():

Часто именно этим путем добиваются повышения точности результатов измерения.

Совокупные измерения отличаются от совместных только тем, что при совокупных измерениях одновременно измеряют несколько одноименных величин, а при совместных – разноименных.

Совокупные и совместные измерения часто применяют при измерении различных параметров и характеристик в области электротехники.

По характеру изменения измеряемой величины бывают статические, динамические и статистические измерения.

Статические – измерения неизменных во времени ФВ например, измерение длины детали при нормальной температуре.

Динамические – измерения изменяющихся во времени ФВ, например измерение расстояния до уровня земли со снижающегося самолета, или напряжение в сети переменного тока.

Статистические измерения связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т.д.

По точности существуют измерения с максимально возможной точностью, контрольно-поверочные и технические.

Измерения с максимально возможной точностью – это эталонные измерения, связанные с точностью воспроизведения единиц физической величины, измерения физических констант. Эти измерения определяются существующим уровнем техники.

Контрольно–поверочные – измерения, погрешность которых не должна превышать некоторое заданное значение. К ним относятся измерения, выполняемые лабораториями государственного надзора за внедрением и соблюдением стандартов и состоянием измерительной техники, измерения заводскими измерительными лабораториями и другие, осуществляемые при помощи средств и методик, гарантирующих погрешность, не превышающую заранее заданного значения.

Технические измерения – измерения, в которых погрешность результата определяется характеристиками средств измерений (СИ). Это наиболее массовый вид измерений, проводится с помощью рабочих СИ, погрешность которых заранее известна и считается достаточной для выполнения данной практической задачи.

Измерения по способу выражения результатов измерений могут быть также абсолютными и относительными.

Абсолютное измерение – измерение, основанное на прямых измерениях одной или нескольких основных величин, а также на использовании значений физических констант. При линейных и угловых абсолютных измерениях, как правило, находят одну физическую величину, например, диаметр вала штангенциркулем. В некоторых случаях значения измеряемой величины определяют непосредственным отсчетом по шкале прибора, отградуированного в единицах измерения.

Относительное измерение – измерение отношения величины к одноименной величине, играющей роль единицы. При относительном методе измерений производится оценка значения отклонения измеряемой величины относительно размера установочной меры или образца. Примером является измерение на оптиметре или миниметре.

По числу измерений различают однократные и многократные измерения.

Однократные измерения – это одно измерение одной величины, т.е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями, поэтому следует проводить не менее трех однократных измерений и находить конечный результат как среднее арифметическое значение.

Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Обычно минимальное число измерений в данном случае больше трех. Преимущество многократных измерений – в значительном снижении влияний случайных факторов на погрешность измерения.

Приведенные виды измерений включают различные методы, т.е. способы решения измерительной задачи с теоретическим обоснованием по принятой методике.

Метод измерений - совокупность приемов использования принципов и средств измерений.

А).Метод непосредственной оценки заключается в определения значения физической величины по отсчетному устройству измерительного прибора прямого действия. Например – измерение напряжения вольтметром.Этот метод является наиболее распространенным, но его точность зависит от точности измерительного прибора.

Б).Метод сравнения с мерой – в этом случае измеряемая величина сравнивается с величиной, воспроизводимой мерой. Точность измерения может быть выше, чем точность непосредственной оценки.

Различают следующие разновидности метода сравнения с мерой:

Метод противопоставления , при котором измеряемая и воспроизводимая величина одновременно воздействуют на прибор сравнения, с помощью которого устанавливается соотношение между величинами. Пример: измерение веса с помощью рычажных весов и набора гирь.

Дифференциальный метод , при котором на измерительный прибор воздействует разность измеряемой величины и известной величины, воспроизводимой мерой. При этом уравновешивание измеряемой величины известной производится не полностью. Пример: измерение напряжения постоянного тока с помощью дискретного делителя напряжения, источника образцового напряжения и вольтметра.

Нулевой метод , при котором результирующий эффект воздействия обеих величин на прибор сравнения доводят до нуля, что фиксируется высокочувствительным прибором – нуль-индикатором. Пример: измерение сопротивления резистора с помощью четырехплечевого моста, в котором падение напряжения на резисторе с неизвестным сопротивлением уравновешивается падением напряжения на резисторе известного сопротивления.

Метод замещения , при котором производится поочередное подключение на вход прибора измеряемой величины и известной величины, и по двум показаниям прибора оценивается значение измеряемой величины, а затем подбором известной величины добиваются, чтобы оба показания совпали. При этом методе может быть достигнута высокая точность измерений при высокой точности меры известной величины и высокой чувствительности прибора. Пример: точное точное измерение малого напряжения при помощи высокочувствительного гальванометра, к которому сначала подключают источник неизвестного напряжения и определяют отклонение указателя, а затем с помощью регулируемого источника известного напряжения добиваются того же отклонения указателя. При этом известное напряжение равно неизвестному.

Метод совпадения , при котором измеряют разность между измеряемой величиной и величиной, воспроизводимой мерой, используя совпадение отметок шкал или периодических сигналов. Пример: измерение частоты вращения детали с помощью мигающей лампы стробоскопа: наблюдая положение метки на вращающейся детали в моменты вспышек лампы, по известной частоте вспышек и смещению метки определяют частоту вращения детали.

К видам измерений (если не разделять их по видам измеряемых физических величин на линейные, оптические, электрические и др.) можно отнести измерения:

  • прямые и косвенные,
  • совокупные и совместные,
  • абсолютные и относительные,
  • однократные и многократные,
  • технические и метрологические,
  • равноточные и неравноточные,
  • равнорассеянные и неравнорассеянные,
  • статические и динамические.

Прямые и косвенные измерения различают в зависимости от способа получения результата измерений.

При прямых измерениях искомое значение величины определяют непосредственно по устройству отображения измерительной информации применяемого средства измерений. Формально без учета погрешности измерения они могут быть описаны выражением

где Q – измеряемая величина,

Косвенные измерения – измерения, при которых искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. Формальная запись такого измерения

Q = F (X, Y, Z,…),

где X, Y, Z,… – результаты прямых измерений.

Измерение некоторого множества физических величин классифицируется в соответствии с однородностью (или неоднородностью) измеряемых величин.

При совокупных измерениях осуществляется измерение нескольких одноименных величин.

Совместные измерения подразумевают измерение нескольких неодноименных величин, например, для нахождения зависимости между ними.

При измерениях для отображения результатов могут быть использованы разные оценочные шкалы, в том числе градуированные либо в единицах измеряемой физической величины, либо в различных относительных единицах, включая и безразмерные. В соответствии с этим принято различать абсолютные и относительные измерения.

По числу повторных измерений одной и той же величины различают однократные и многократные измерения, причем многократные неявно подразумевают последующую математическую обработку результатов.

В зависимости от точности измерения делят на технические и метрологические, а также на равноточные и неравноточные, равнорассеянные и неравнорассеянные.

Технические измерения выполняют с заранее установленной точностью, иными словами, погрешность технических измерений не должна превышать заранее заданного значения.

Метрологические измерения выполняют с максимально достижимой точностью, добиваясь минимальной погрешности измерения.

Оценка равноточности и неравноточности, равнорассеянности и неравнорассеянности результатов нескольких серий измерений зависит от выбранной предельной меры различия погрешностей или их случайных составляющих, конкретное значение которой определяют в зависимости от задачи измерения.

Статические и динамические измерения правильнее характеризовать в зависимости от соизмеримости режима восприятия входного сигнала измерительной информации и его преобразования. При измерении в статическом (квазистатическом) режиме скорость изменения входного сигнала несоизмеримо ниже скорости его преобразования в измерительной цепи и все изменения фиксируются без дополнительных динамических искажений. При измерении в динамическом режиме появляются дополнительные (динамические) погрешности, связанные со слишком быстрым изменением самой измеряемой физической величины или входного сигнала измерительной информации от постоянной измеряемой величины.

1.Методы измерения:прямые и косвенные.Прямые -когда измеряется непосредственно сама измеряемая величина.(измерение темп ртутным термометром)Косвенное -когда измеряется не сама изм.вел. а величины функционально связанные с нею.(измеряют U и R а затем рассчитывают I) По принципу методы измерения делят на: 1Метод непосредственной оценки (измерение длины метром).2Метод сравнения с мерой (измерение массы груза с помощью образцовых гирь)Мера -тех.средство высокой точности измерения. 3Дифференциальный метод -при этом методе измеряется не сама изм.вел R x а ее отклонение от заданной величины R 0 .Для измерения используется специальная мостовая схема кот состоит из 4плеч: R x, R 0 , R 1 , R 2 . В схеме всегда R 1 =R 2 .Балластные сопротивления для повышения точности измерения: СД-диаганаль питания, АВ-измерительная диаганаль.Измерит схема находится в равновесии т.е потенциалы точек АиВ равны(φ А = φ В)Если выполняется условие R x R 2 =R 0 R 1 если R x =R 0 схема находится в равновесии.Если Rx отличается от R 0 то потенциал т.А отличается от потенциала т.В разность потенциалов= ∆φ= φ А -φ В (измеряется прибором).R 0 может состоять из нескольких последовательно включенных сопротивлений разной величины.Такое устройство наз магазином сопротивлений. 4Нулевой метод -при этом методе в качестве изм.прибора используется гальванометр,кот определяет разность потенциалов в изм.диаганале.Если измеряемой сопротивление R x отличается от R 0 то появляется разность потенциалов и перемещая ползунок R 0 добиваются чтобы гальванометр показывал 0.по положению ползунка и шкале определяют значение R x .5Компенсационные метод (является разновидностью нулевого и еще наз методом силовой компенсации)Разность потенциалов усиливается электронным усилителем и постоупает на реверсивный электродвигатель кот начинает перемещать ползунок R 0 и стрелку ук-теля до тех пор пока не сравняются потенциалы точек АиВ.

2.Погрешность измерения делится на Абсалютную,Относительную, Приведенную.1.Абсалютная погрешность -разность между значениями измеряемой величины и ее действит.значением.За дествит.значение принимается показания образцового прибора. ∆ абс =±(А изм -А дейст).2Приведенная -отношениеабсалютной погрешности к нормированному значению,выражается в %. ∆ прив = ∆ абс /N*100.3.Относительная -отношение абсолютной погрешности к измеренной величине,выражается в %.Погрешности могут систематич (обусловлена конструкцией прибора и не зависит от внешних факторов)случайная (зависит от условий измерения,изменение параметров окр.среды,питания)промах (вызвана неправильными действиями оператора)Допустимые погрешности ограничиваются классом точности прибора.Он определяетяс заводом изготовителем и указывается на шкале прибора или в его паспорте. Класс точности-обощенная хар-ка прибора,ограничивающая систематич и случайные погрешности.(1;1,5;2;2,5;3;4)10 n .n-ук-тель степени,единица илиотриц число..Чем не выше цифра класса точности,тем ниже точность измерения(ртутный термометр показвает темп 21,5 а показание образцового термометра-21,9. = ∆ абс /А изм *100%-относительная погрешность.К=∆ абс /N*100%-приведенная погрешность.

3.Автоматич контроль (АК)-задачей является измерение параметров техпроцесса и отображение инфы о текущем значении параметра показывающими и регистрирующими приборами.При автоматич контроле средства автоматизации не вмешиваются в управление техпроцессом даже при создании аварийной ситуации..АК может быть местным и дистанционным.При местном АК датчики и первич. Преобразователи устанавливаются непосредственно на тех.оборудовании.Показывающин приборы могут находиться на оборудовании а регистрирующие на местных щитах кот размещены на раб.месте ОТП. Дистанционный контроль упрощает управлениетехпроцессом.На раб.месте ОТП на щите расположены средства ДУ регулирующими органами(GLE-c этой панели оператор может изменить положение регулирующего органа и по прибору на этой панели контролировать насколько % открылся/закрылся регулирующий орган а по вторичному прибору наблюдать как изменилось значение контролируемого параметра. Автоматич сигнализация- предназначена для сигнализации отклонений значений параметра от заданного значения.Бывает световая и звуковая.Световая(выполняется пневматич или электрич лампами) Звуковая(электрич звонками,сиренами и ревунами).Сигнализация может быть технологич и аварийной.Технологич-предупреждает ОТП что параметр отклонился от нормы.Аварийная-техпроцесс приближается к аварийному состоянию.Используют сирены и ревуны.

4.Автоматич регулирование.САР предназначена для содержания регулируемого параметра на заданном уровне с заданной точностью длительное время.САР работает по след алгоритму:ПП получает онформацию о текущем значении регулируемого параметра и преобразует в унифиц сигнал.Тот поступает на ВП для отображения информации и на АР.АР сравнивает полученную инфу с заданием определяет величину и знак рассогласования и в соответствии с выбранным законом регулирования управляющее воздействие поступает на регулирующий орган кот изменяет энергетичи или технологич потоки и возвращает регулируемую величину к заданному значению.ОТП непосредственно не участчует в упралении а только наблюдает за ходом техпроцесса и при необходимости изменяет задание на АР

Измерения различают по способу получения информации, по характеру изменений измеряемой величины в процессе измерений, по количеству измерительной информации, по отношению к основным единицам.

По способу получения информации измерения разделяют на прямые, косвенные, совокупные и совместные.

Прямые измерения – это непосредственное сравнение физической величины с ее мерой. Например, при определении длины предмета линейкой происходит сравнение искомой величины (количественного выражения значения длины) с мерой, т. е. линейкой.

Косвенные измерения – отличаются от прямых тем, что искомое значение величины устанавливают по результатам прямых измерений таких величин, которые связаны с искомой определенной зависимостью. Так, если измерить силу тока амперметром, а напряжение вольтметром, то по известной функциональной взаимосвязи всех трех величин можно рассчитать мощность электрической цепи.

Совокупные измерения – сопряжены с решением системы уравнений, составляемых по результатам одновременных измерений нескольких однородных величин. Решение системы уравнений дает возможность вычислить искомую величину.

Совместные измерения – это измерения двух или более неоднородных физических величин для определения зависимости между ними.

Совокупные и совместные измерения часто применяют в измерениях различных параметров и характеристик в области электротехники.

По характеру изменения измеряемой величины в процессе измерений бывают статистические, динамические и статические измерения.

Статистические измерения связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т. д. Статические измерения имеют место тогда, когда измеряемая величина практически постоянна.

Динамические измерения связаны с такими величинами, которые в процессе измерений претерпевают те или иные изменения. Статические и динамические измерения в идеальном виде на практике редки.

По количеству измерительной информации различают однократные и многократные измерения.

Однократные измерения – это одно измерение одной величины, т. е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями, поэтому следует проводить не менее трех однократных измерений и находить конечный результат как среднее арифметическое значение.

Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Преимущество многократных измерений – в значительном снижении влияний случайных факторов на погрешность измерения.

По используемому методу измерения – совокупности приемов использования принципов и средств измерений различают:

– метод непосредственной оценки;

– метод сравнения с мерой;

– метод противопоставления;

– метод дифференциальный;

– метод нулевой;

– метод замещения;

– метод совпадений.

По условиям, определяющим точность результата, измерения делятся на три класса: измерения максимально возможной точности, достижимой при существующем уровнетехники; контрольно-поверочные измерения, погрешность которых не должна превышать некоторое заданное значение; технические (рабочие) измерения, в которых погрешность результата измерения определяется характеристиками средств измерений.

Поделиться