Леонард эйлер научные достижения. Биография

Входит в первую пятерку величайших математиков всех времен и народов. Родился в семье пастора и провел детство в близлежащем селении, где его отец получил приход. Здесь на лоне сельской природы, в благочестивой обстановке скромного пасторского дома Леонард получил начальное воспитание, наложившее глубокий отпечаток на всю его последующую жизнь и мировоззрение.


Обучение в гимназии в те времена было непродолжительным. Осенью 1720 тринадцатилетний Эйлер поступил в Базельский университет, через три года окончил низший – философский факультет и записался, по желанию отца, на теологический факультет. Летом 1724 на годичном университетском акте он прочел по-латыни речь о сравнении картезианской и ньютонианской философии. Проявив интерес к математике, он привлек к себе внимание Иоганна Бернулли. Профессор стал лично руководить самостоятельными занятиями юноши и вскоре публично признал, что от проницательности и остроты ума юного Эйлера он ожидает самых больших успехов.

Еще в 1725 Леонард Эйлер выразил желание сопровождать сыновей своего учителя в Россию, куда они были приглашены в открывавшуюся тогда – по воле Петра Великого – Петербургскую Академию наук. На следующий год получил приглашение и сам. Покинул Базель весной 1727 и после семинедельного путешествия прибыл в Петербург. Здесь он был зачислен сначала адъюнктом по кафедре высшей математики, в 1731 стал академиком (профессором), получив кафедру теоретической и экспериментальной физики, а затем (1733) кафедру высшей математики.

Сразу же по приезде в Петербург он полностью погрузился в научную работу и тогда же поразил всех плодотворностью своей деятельности. Многочисленные его статьи в академических ежегодниках, первоначально посвященные преимущественно задачам механики, скоро принесли ему всемирную известность, а позже способствовали и славе петербургских академических изданий в Западной Европе. Непрерывный поток сочинений Эйлера печатался с тех пор в трудах Академии в течение целого века.

Наряду с теоретическими исследованиями, Эйлер уделял много времени и практической деятельности, исполняя многочисленные поручения Академии наук. Так, он обследовал разнообразные приборы и механизмы, участвовал в обсуждении способов подъема большого колокола в Московском кремле и т.п. Одновременно он читал лекции в академической гимназии, работал в астрономической обсерватории, сотрудничал в издании Санкт-Петербургских ведомостей, вел большую редакционную работу в академических изданиях и пр. В 1735 Эйлер принял участие в работе Географического департамента Академии, внеся большой вклад в развитие картографии России. Неутомимая работоспособность Эйлера не была прервана даже полной потерей правого глаза, постигшей его в результате болезни в 1738.

Осенью 1740 внутренняя обстановка в России осложнилась. Это побудило Эйлера принять приглашение прусского короля, и летом 1741 он переехал в Берлин, где вскоре возглавил математический класс в реорганизованной Берлинской Академии наук и словесности. Годы, проведенные Эйлером в Берлине, были наиболее плодотворными в его научной деятельности. На этот период падает и его участие в ряде острых философско-научных дискуссий, в том числе о принципе наименьшего действия. Переезд в Берлин не прервал, однако, тесных связей Эйлера с Петербургской Академией наук. Он по-прежнему регулярно посылал в Россию свои сочинения, участвовал во всякого рода экспертизах, обучал посланных к нему из России учеников, подбирал ученых на замещение вакантных должностей в Академии и выполнял много других поручений.

Религиозность и характер Эйлера не соответствовали окружению «вольнодумного» Фридриха Великого. Это привело к постепенному осложнению отношений между Эйлером и королем, который при этом отлично понимал, что Эйлер является гордостью Королевской Академии. В последние годы своей берлинской жизни Эйлер исполнял фактически обязанности президента Академии, но должности этой так и не получил. В итоге летом 1766, несмотря на сопротивление короля, Эйлер принял приглашение Екатерины Великой и вернулся в Петербург, где оставался затем до конца своей жизни.

В том же 1766 Эйлер почти полностью потерял зрение и на левый глаз. Однако это не помешало продолжению его деятельности. С помощью нескольких учеников, писавших под его диктовку и оформлявших его труды, полуслепой Эйлер подготовил в последние годы своей жизни еще несколько сотен научных работ.

В начале сентября 1783 Эйлер почувствовал легкое недомогание. 18 сентября он еще занимался математическими исследованиями, но неожиданно потерял сознание и, по меткому выражению панегириста, «прекратил вычислять и жить».

Похоронен на Смоленском лютеранском кладбище в Петербурге, откуда его прах перенесен осенью 1956 в некрополь Александро-Невской лавры.

Научное наследие Леонарда Эйлера колоссально. Ему принадлежат классические результаты в математическом анализе. Он продвинул его обоснование, существенно развил интегральное исчисление, методы интегрирования обыкновенных дифференциальных уравнений и уравнений в частных производных. Эйлеру принадлежит знаменитый шеститомный курс математического анализа, включающий Введение в анализ бесконечно малых, Дифференциальное исчисление и Интегральное исчисление (1748–1770). На этой «аналитической трилогии» учились многие поколения математиков всего мира.

Эйлер получил основные уравнения вариационного исчисления и определил пути дальнейшего его развития, подведя главные итоги своих исследований в этой области в монографии Метод нахождения кривых линий, обладающих свойствами максимума или минимума (1744). Значительны заслуги Эйлера в развитии теории функций, дифференциальной геометрии, вычислительной математики, теории чисел. Двухтомный курс Эйлера Полное руководство по алгебре (1770) выдержал около 30 изданий на шести европейских языках.

Фундаментальные результаты принадлежат Леонарду Эйлеру в рациональной механике. Он впервые дал последовательно аналитическое изложение механики материальной точки, рассмотрев в своей двухтомной Механике (1736) движение свободной и несвободной точки в пустоте и в сопротивляющейся среде. Позже Эйлер заложил основы кинематики и динамики твердого тела, получив соотве

тствующие общие уравнения. Итоги этих исследований Эйлера собраны в его Теории движения твердых тел (1765). Совокупность уравнений динамики, представляющих законы количества движения и момента количества движения, крупнейший историк механики Клиффорд Трусделл предложил называть «Эйлеровыми законами механики».

В 1752 была опубликована статья Эйлера Открытие нового принципа механики, в которой он сформулировал в общем виде ньютоновы уравнения движения в неподвижной системе координат, открыв путь для изучения механики сплошных сред. На этой основе он дал вывод классических уравнений гидродинамики идеальной жидкости, найдя и ряд их первых интегралов. Значительны также его работы по акустике. При этом ему принадлежит введение как «эйлеровых» (связанных с системой отсчета наблюдателя), так и «лагранжевых» (в сопутствующей движущемуся объекту системе отсчета) координат.

Замечательны многочисленные работы Эйлера по небесной механике, среди которых наиболее известна его Новая теория движения Луны (1772), существенно продвинувшая важнейший для мореходства того времени раздел небесной механики.

Наряду с общетеоретическими исследованиями, Эйлеру принадлежит ряд важных работ по прикладным наукам. Среди них первое место занимает теория корабля. Вопросы плавучести, остойчивости корабля и других его мореходных качеств были разработаны Эйлером в его двухтомной Корабельной науке (1749), а некоторые вопросы строительной механики корабля – в последующих работах. Более доступное изложение теории корабля он дал в Полной теории строения и вождения кораблей (1773), которая использовалась в качестве практического руководства не только в России.

Значительный успех имели комментарии Эйлера к Новым началам артиллерии Б.Робинса (1745), содержавшие, наряду с другими его сочинениями, важные элементы внешней баллистики, а также разъяснение гидродинамического «парадокса Даламбера». Эйлер заложил теорию гидравлических турбин, толчком для развития которой явилось изобретение реактивного «сегнерова колеса». Ему принадлежит и создание теории устойчивости стержней при продольном нагружении, приобретшей особую важность спустя столетие.

Много работ Эйлера посвящено различным вопросам физики, главным образом геометрической оптике. Особого упоминания заслуживают изданные Эйлером три тома Писем к немецкой принцессе о разных предметах физики и философии (1768–1772), выдержавшие впоследствии около 40 изданий на девяти европейских языках. Эти «Письма» были своего рода учебным руководством по основам науки того времени, хотя собственно философская сторона их и не соответствовала духу эпохи Просвещения.

Современная пятитомная Математическая энциклопедия указывает двадцать математических объектов (уравнений, формул, методов), которые носят сейчас имя Эйлера. Его имя носит и ряд фундаментальных уравнений гидродинамики и механики твердого тела.

Наряду с многочисленными собственно научными результатами, Эйлеру принадлежит историческая заслуга создания современного научного языка. Он является единственным автором середины XVIII в., труды которого читаются даже сегодня без всякого труда.

Петербургский архив Российской Академии наук хранит, кроме того, тысячи страниц неопубликованных исследований Эйлера, преимущественно в области механики, большое число его технических экспертиз, математические «записные книжки» и колоссальную научную корреспонденцию.

Его научный авторитет при жизни был безграничен. Он состоял почетным членом всех крупнейших академий и ученых обществ мира. Влияние его трудов было весьма значительным и в XIX в. В 1849 Карл Гаусс писал, что «изучение всех работ Эйлера останется навсегда лучшей, ничем не заменимой, школой в различных областях математики».

Общий объем сочинений Эйлера громаден. Свыше 800 его опубликованных научных работ составляют около 30 000 печатных страниц и складываются в основном из следующего: 600 статей в изданиях Петербургской Академии наук, 130 статей, опубликованных в Берлине, 30 статей в разных журналах Европы, 15 мемуаров, удостоенных премий и поощрений Парижской Академии наук, и 40 книг отдельных сочинений. Все это составит 72 тома близкого к завершению Полного собрания трудов (Opera omnia) Эйлера, издаваемого в Швейцарии с 1911. Все работы печатаются здесь на том языке, на котором они были первоначально опубликованы (т.е. на латинском и французском языках, которые были в середине XVIII в. основными рабочими языками, соответственно, Петербургской и Берлинской академий). К этому добавится еще 10 томов его Научной переписки, к изданию которой приступили в 1975.

Надо отметить особое значение Эйлера для Петербургской Академии наук, с которой он был тесно связан на протяжении свыше полувека. «Вместе с Петром I и Ломоносовым, – писал академик С.И.Вавилов, – Эйлер стал добрым гением нашей Академии, определившим ее славу, ее крепость, ее продуктивность». Можно добавить еще, что дела Петербургской академии велись в течение почти целого века под руководством потомков и учеников Эйлера: непременными секретарями Академии с 1769 до 1855 были последовательно его сын, зять сына и правнук.

Он вырастил трех сыновей. Старший из них был петербургским академиком по кафедре физики, второй – придворным врачом, а младший – артиллерист дослужился до чина генерал-лейтенанта. Почти все потомки Эйлера приняли в XIX в. российское подданство. Среди них были высшие офицеры российской армии и флота, а также государственные деятели и ученые. Лишь в смутное время начала XX в. многие из них вынуждены были эмигрировать. Сегодня прямые потомки Эйлера, носящие его фамилию, все еще живут в России и Швейцарии.

(Следует заметить, что фамилия Эйлера в подлинном произношении звучит как «Ойлер».)

Издания: Сборник статей и материалов. М. – Л.: Изд-во АН СССР, 1935; Сборник статей. М.: Изд-во АН СССР, 1958

Эйлер Леонард (1707-1783), математик, физик, механик, астроном.

Родился 15 апреля 1707 г. в Базеле (Швейцария). Окончил местную гимназию, слушал в Базельском университете лекции И. Бернулли. В 1723 г. получил степень магистра. В 1726 г. по приглашению Петербургской академии наук приехал в Россию и был назначен адъюнктом по математике.

В 1730 г. занял кафедру физики, а в 1733 г. стал академиком. За 15 лет своего пребывания в России Эйлер успел написать первый в мире учебник теоретической механики, а также курс математической навигации и многие другие труды.

В 1741 г. он принял предложение прусского короля Фридриха II и переехал в Берлин. Но и в это время учёный не порвал связи с Петербургом. В 1746 г. вышло три тома статей Эйлера, посвящённых баллистике.

В 1749 г. он выпустил двухтомный труд, впервые излагающий вопросы навигации в математической форме. Многочисленные открытия, сделанные Эйлером в области математического анализа, были позже объединены в книге «Введение в анализ бесконечно малых величин» (1748 г.).

Вслед за «Введением» вышел трактат в четырёх томах. 1-й том, посвящённый дифференциальному исчислению, вышел в Берлине (1755 г.), а остальные, посвящённые интегральному исчислению, - в Петербурге (1768-1770 гг.).

В последнем, 4-м томе рассматривается вариационное исчисление, созданное Эйлером и Ж. Лагранжем. Одновременно Эйлер исследовал вопрос о прохождении света через различные среды и связанный с этим эффект хроматизма.

В 1747 г. он предложил сложный объектив.

В 1766 г. Эйлер вернулся в Россию. Работу «Элементы алгебры», увидевшую свет в 1768 г., учёный вынужден был диктовать, так как к этому времени он ослеп. Тогда же печатались три тома интегрального исчисления, два тома элементов алгебры, мемуары («Вычисление Кометы 1769», «Вычисление затмения Солнца», «Новая теория Луны», «Навигация» и др.).

В 1775 г. Парижская академия наук в обход статута и с согласия французского правительства определила Эйлера своим девятым (должно быть только восемь) «присоединённым членом».

Эйлеру принадлежит более 865 исследований по самым разнообразным и труднейшим вопросам. Он оказал большое и плодотворное влияние на развитие математического просвещения в России в XVIII в. Петербургская математическая школа, в которую входи ли академики С. К. Котельников, С. Я Румовский, Н. И. Фусс, М. Е. Головин и другие учёные, под руководством Эйлера провела огромную просветительную работу, создала обширную и замечательную для своего времени учебную литературу, выполнила ряд интересных исследований.

Леонард Эйлер - один из величайших математиков всех времен - отличался неудержимой тягой к знаниям и неуемной энергией. Его именем названы многие классические теоремы во всех областях математики.

Леонард Эйлер родился в швейцарском городе Базеле 15 апреля 1707 года. Пауль Эйлер – отец мальчика – был пастором и мечтал, чтобы сын пошел по его стопам. С первых лет жизни он обучает Леонарда всевозможным наукам, желая воспитать в нем тягу к новым знаниям. Особенный талант обнаружился у Эйлера к точным предметам и отец сразу же стал развивать его способности. Сам Пауль посвящал занятиям математикой практически все свободное время, а в юности даже посещал уроки знаменитого Якоба Бернулли.

Домашнее обучение стало прочным фундаментом для дальнейшего образования мальчика. Когда он поступил в базельскую гимназию, все предметы дались ему с необычайной легкостью. Тем не менее, уровень преподавания в средней школе оставлял желать лучшего и Эйлер стал искать новые возможности получения знаний. В 13 лет Леонард поступает в Базельский университет на факультет свободных искусств. Так он попадает на лекции по математике младшего брата Якоба Бернулли – Иоганна.

Профессор замечает способного ученика и назначает Эйлеру индивидуальные занятия. Под чутким руководством Бернулли мальчик знакомится со сложнейшими трудами великих математиков, учится их понимать и анализировать. Такой подход к обучению позволил Леонарду получить первую ученую степень уже в 16 лет, когда он на латинском языке смог провести сравнительный анализ работ Декарта и Ньютона. Так Эйлер становится магистром искусств.

После окончания университета в образование сына снова вмешался Пауль. Будучи уверенным, что Леонард станет священником, отец заставляет его учить языки: древнееврейский и греческий. Особых успехов Эйлер не добился, так что отцу пришлось смириться с его увлечением математикой. Тем не менее, 17-летнему юноше не удается найти работу по специальности – все места в университете заняты. Он продолжает посещать дом профессора Бернулли и заводит тесную дружбу с его сыновьями: Даниилом и Николаем.

В 1727 году, вслед за братьями Бернулли, ученый уезжает в Петербург. Здесь Эйлер становится адъюнктом высшей математики. В 1730 году Леонарду Эйлеру предложили возглавить кафедру физики, а в январе 1731 года он становится профессором. С 1733 года под его руководством уже кафедра высшей математики. За 14 лет, проведенных в Петербурге, он издает труды по гидравлике, навигации, механике, картографии и, конечно же, математике. В общей сложности на его счету более 70 научных работ. На западе Эйлера узнают именно как русского ученого. Швейцарские корни Леонарда напоминают о себе лишь в личной жизни – он женится на швейцарке Катерине Гзель.

Петербургская Академия наук на то время могла похвастаться уникальным педагогическим составом. Здесь преподают и ведут научную деятельность такие известные ученые, как Я. Герман, Д. Бернулли, Х. Гольдбах и многие другие. Такая компания позволяет Эйлеру максимально углубиться в свои исследования, и ученый публикует все новые и новые работы в изданиях Академии. Самая значимая из них – двухтомник «Механика».

Фридрих II, будучи королем Пруссии, решает открыть Берлинскую Академию на основе Общества наук. Он приглашает Эйлера работать в Берлине на очень выгодных условиях. В 1841 году ученый решается на переезд, тем не менее, ведет активную переписку с российскими учеными, в частности, с Ломоносовым. В Берлине Леонард Эйлер знакомится с президентом Академии наук Моро де Мопертюи и фактически становится его заместителем – Моро часто болеет, а Эйлер выполняет его обязанности.

В Германии ученый продолжает работать в области теории чисел, математического анализа и вариационного исчисления, применяет новый подход к изучению геометрии. Результатом исследований Эйлера становится новая наука – топология. Тогда же в поле интересов Леонарда попадает кораблестроение и небесная механика. В последней он достигает небывалых успехов – создает теорию движения Луны, учитывая притяжение Солнца.

Долгожданный пост президента Академии Эйлер так и не получил, что стало одной из основных причин его возвращения в Петербург. Здесь его тепло принимает сама покровительница наук – Екатерина II. Ученый с энтузиазмом принимается работать на благо России.

Возраст дает о себе знать, и в 60 лет Эйлер почти полностью теряет зрение, тем не менее, научной деятельности не прекращает. После возвращения он успевает напечатать 200 сочинений в разных областях науки.

Первая жена Леонарда умирает вскоре после переезда и, спустя пару лет, ученый женится на ее родной сестре Саломее-Абигайль Гзель. Его дети принимают русское подданство.

Правительство высоко ценит достижения ученого и его вклад в развитие науки. Даже прекратив свою научную деятельность, Эйлер и его семья были полностью обеспечены всем необходимым за счет государства. Леонард Эйлер умирает в 1783 году в Петербурге в возрасте 75 лет. К этому времени у него было 5 детей и 26 внуков. После себя он оставил 800 научных статей и 72 тома, посвященных различным областям науки.

За время своей научной деятельности Леонард Эйлер основал теорию функций с комплексными переменными, обыкновенных дифференциальных уравнений, уравнений в частных производных. Он стал первопроходцем в вариационном исчислении и топологии, применял новые приемы интегрирования. Его именем названы многие теоремы алгебры и теории чисел, которые впоследствии стали классическими.

Пользуясь результатами Стирлинга и Ньютона, Эйлер в 1732 году (в одно время с Маклареном) открыл общий закон суммирования. Другими словами, выразил частную сумму, интеграл и производную бесконечного ряда sn= ∑ u (k) через ряд с общим членамu (n). Исследуя полученные данные, а также отношение чисел Бернулли B2n+2:B2n, Эйлер определил, что данный ряд - расходящийся, тем не менее, смог вычислить его приблизительное значение. Для этого ученый использовал сумму всех членов ряда, которые убывают. Это открытие привело к понятию асимптотического ряда, которому в дальнейшем посвятили свои труды многие известные математики. Среди них Лаплас , Лежандр, Лагранжа , Пуассон и Коши. Формула Эйлера-Макларена стала основой теории конечных разностей.

Увлекшись работами Даламбера, Эйлер начинает изучать теорию струн. В своей статье "О колебании струны" ученый находит общее решение уравнения колебания, принимая начальную скорость за нулевую величину. Оно имело вид у = φ (х + at) + ψ(х - at), где а - константа, и мало отличалось от решения Даламбера. Впрочем, в 1766 году Эйлер находит и свой собственный метод, который позже войдет в его "Интегральное исчисление" (1770).Для этого он ввел новые координаты, которые привели уравнение к более простому для интегрирования виду: u= х + at, v = х - at. В современных учебниках по дифференциальным уравнениям такие координаты называют характеристическими и широко применяют для различного рода вычислений.

Одним из главных открытий Эйлера стала формула, названная его именем. В ней говорится о том, что для любого действительного x верно равенство eix= cosx + isinx (i - мнимая единица, e - основание натурального логарифма). Таким образом, ученый связал тригонометрическую функцию и комплексную экспоненту. Формула была опубликована в книге "Введение в анализ бесконечно малых" (1748). Продолжая исследования в этой области, Эйлер получил показательную форму комплексного числа вида z = reiφ.

Кроме того, он значительно упростил и сократил математические записи – ввел обозначения для тригонометрических функций: tg x, ctg x, sec x, cosec x и первым стал рассматривать их, как функции числового аргумента, что и стало основой современной тригонометрии.

Как позже утверждал Лаплас, все математики XVIII века учились у Эйлера. Впрочем, даже спустя несколько столетий, его математические методы применяют в морском деле, баллистике, оптике, теории музыки и страховом деле.

Эйлер родился 15 апреля 1707 г. в г. Базель, в Швейцарии. Его отец, Пауль Эйлер, был пастором Реформатской церкви. Отец его матери, Маргарита Брукер, также был пастором. У Леонарда было две младшие сестры – Анна Мария и Мария Магдалена. Вскоре после рождения сына, семья переезжает в городок Риен. Отец мальчика был другом Иоганна Бернулли – известного европейского математика, оказавшего большое влияние на Леонарда. В тринадцать лет Эйлер-младший поступает в Базельский университет, и в 1723 г. получает степень магистра философии. В своей диссертации Эйлер сравнивает философии Ньютона и Декарта. Иоганн Бернулли, дававший мальчику по субботам частные уроки, быстро распознаёт выдающиеся способности мальчика к математике и убеждает его оставить раннюю теологию и сосредоточиться на математике.

В 1727 г. Эйлер принимает участие в конкурсе, организованном Парижской академии наук, на лучшую технику установки корабельных мачт. Леонард занимает второе место, в то время как первое достаётся Пьеру Бугеру, который впоследствии станет известен как «отец кораблестроения». Эйлер каждый год принимает участие в этом конкурсе, получив за свою жизнь двенадцать этих престижных наград.

Санкт-Петербург

17 мая 1727 г. Эйлер поступает на службу в медицинское отделение Императорской российской академии наук в Санкт-Петербурге, но почти сразу же переходит на математический факультет. Однако из-за волнений в России, 19 июня 1741 г. Эйлер переводится в Берлинскую академию. Там учёный прослужит около 25 лет, написав за это время более 380 научных статей. В 1755 г. его избирают иностранным членом Шведской королевской академии наук.

В начале 1760-х г.г. Эйлеру поступает предложение обучать наукам принцессу Анхальт-Дессау, которой учёный напишет более 200 писем, вошедших в ставший крайне популярным сборник «Письма Эйлера на разные предметы натуральной философии, адресованные немецкой принцессе». Книга не только наглядно демонстрирует способности учёного рассуждать на всевозможные темы в области математики и физики, но также является выражением его личных и религиозных взглядов. Интересно то, что эта книга известна лучше, чем все его математические труды. Она издавалась как в Европе, так и в Соединённых штатах Америки. Причиной такой популярности этих писем стала удивительная способность Эйлера в доступной форме доносить научные сведения до простого обывателя.

Уникальность этого труда состояла ещё и в том, что в 1735 г. учёный почти полностью ослеп на правый глаз, а в 1766 г. левый его глаз был поражён катарактой. Но, даже несмотря на это, он продолжает свои работы и в 1755 г. пишет в среднем по одной математической статье в неделю.

В 1766 г. Эйлер принимает предложение вернуться в Петербургскую академию, и остаток своей жизни проведёт в России. Однако его второй приезд в эту страну оказывается для него не столь удачным: в 1771 г. пожар уничтожает его дом, а, вслед за этим, в 1773 г. он теряет свою жену Катарину.

Личная жизнь

7 января 1734 г. Эйлер женится на Катарине Гзель. В 1773 г., после 40 лет семейной жизни, Катарина умирает. Спустя три года, Эйлер женится на её сводной сестре, Саломе Абигейл Гзель, с которой и проведёт остаток жизни.

Смерть и наследие

18 сентября 1783 г., после семейного обеда, у Эйлера случается кровоизлияние в мозг, после чего, спустя несколько часов, он умирает. Похоронили учёного на Смоленском лютеранском кладбище на Васильевском острове, рядом с его первой женой Катариной. В 1837 г. Российская академия наук поставила на могиле Леонарда Эйлера бюст на пьедестале, выполненном в форме ректорского кресла, рядом с могильным камнем. В 1956 г., к 250-летию со дня рождения учёного, памятник и останки были перенесены на кладбище XVIII века при монастыре Александра Невского.

В память о его огромном вкладе в науку, портрет Эйлера появился на швейцарских 10-франковых банкнотах шестой серии, а также на ряде российских, швейцарских и немецких марок. В его честь назван астероид «2002 Эйлер». 24 мая лютеранская церковь чтит его память по календарю святых, поскольку Эйлер был убеждённым приверженцем христианства и горячо верил в библейские заповеди.

Система математических обозначений

Среди всех разнообразных работ Эйлера самой заметной является представление теории функций. Он первым ввёл обозначение f(x) – функции “f” по аргументу “x”. Эйлер также определил математические обозначения для тригонометрических функций в том виде, в каком мы знаем их сейчас, ввёл литеру “e” для основания натурального логарифма (известную как «число Эйлера»), греческую букву “Σ” для итоговой суммы и букву “i” для определения мнимой единицы.

Анализ

Эйлер утвердил применение показательной функции и логарифмов в аналитических доказательствах. Он открыл способ разложения различных логарифмических функций в степенной ряд, а также успешно доказал применение логарифмов к отрицательным и комплексным числам. Таким образом, Эйлер значительно расширил математическое применение логарифмов.

Этот великий математик также подробно объяснил теорию высших трансцендентных функций и представил новаторский подход к решению квадратных уравнений. Он открыл технику расчёта интегралов с применением сложных пределов. Разработал он и формулу вариационного исчисления, получившую название «уравнение Эйлера-Лагранжа».

Теория чисел

Эйлер доказал малую теорему Ферма, тождества Ньютона, теорему Ферма о суммах двух квадратов, а также значительно продвинул доказательство теоремы Лагранжа о сумме четырёх квадратов. Он внёс ценные дополнения в теорию совершенных чисел, над которой с увлечением трудился не один математик.

Физика и астрономия

Заметный вклад внёс Эйлер в решение уравнения пучка Эйлера-Бернулли, ставшего одним из основных уравнений, применяемых в инженерном деле. Свои аналитические методы учёный применял не только в классической механике, но и в решении небесных задач. За свои достижения в области астрономии Эйлер получил многочисленные награды Парижской академии. Основываясь на знании истинной природы комет и рассчитав параллакс Солнца, учёный чётко вычислил орбиты комет и других небесных тел. С помощью этих расчётов были составлены точные таблицы небесных координат.

Оценка по биографии

Новая функция! Средняя оценка, которую получила эта биография. Показать оценку

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Научные открытия Леонарда Эйлера В том усомниться мог ли кто-то, Что Эйлер удивит весь мир, Что только цифры и расчеты Его единственный кумир. Выполнила: Алексина И.С.

2 слайд

Описание слайда:

Биографические сведения о Леонардо Эйлере Идеальный математик 18 века - так часто называют Эйлера(1707-1789). Он родился в маленькой тихой Швейцарии. Примерно в то же время переселилась в Базель из Голландии семья Бернулли: уникальное созвездие научных талантов во главе с братьями Якобом и Иоганном. По воле случая юный Эйлер попал в эту компанию. Но когда ребята подросли, выяснилось, что в Швейцарии не хватит места для их умов. Зато в России была учреждена в 1725 году Академия Наук. Русских ученых не хватало, и тройка друзей отправилась туда. Поначалу Эйлер расшифровывал дипломатические депеши, обучал молодых моряков высшей математике и астрономии, составлял таблицы для артиллерийской

3 слайд

Описание слайда:

стрельбы и таблицы движения Луны. Громадное наследие Эйлера включает 72 тома, содержащие 886 научных работ. Это блестящие результаты по математическому анализу, геометрии, теории чисел, вариационному исчислению, важнейшие труды по механике, физике, астрономии и ряду прикладных наук. Во многих своих работах Эйлер развил идеи и методы, полное значение которых выяснилось лишь через сто и более лет после его смерти. Заметим также, что вот уже в течение 300 лет школьники всего мира изучают математику, основы которой с ее новой символикой изложил в своих трудах тоже Леонард Эйлер.

4 слайд

Описание слайда:

В 26 лет Эйлер был избран российским академиком, но через 8 лет он переехал из Петербурга в Берлин. Там "король математиков" работал с 1741 по 1766 год; потом он покинул Берлин и вернулся в Россию. Удивительно: слава Эйлера не закатилась и после того, как ученого поразила слепота (вскоре после переезда в Петербург). В 1770-е годы вокруг Эйлера выросла Петербургская математическая школа, более чем наполовину состоявшая из русских ученых. Тогда же завершилась публикация главной его книги - "Основ дифференциального и интегрального исчисления". В начале сентября 1783 Эйлер почувствовал легкое недомогание. 18 сентября он еще занимался математическими исследованиями, но неожиданно потерял сознание и «прекратил вычислять и жить».

5 слайд

Описание слайда:

механики, многочисленные приёмы интегрирования и решения дифференциальных уравнений, число e , обозначение i для мнимой единицы, гамма-функция с её окружением и многое другое. Эйлер охотно участвовал в научных дискуссиях, из которых наибольшую известность получили: спор о струне; спор с Д"Аламбером о свойствах комплексного логарифма; спор с английским оптиком Джоном Доллондом (англ.) о том, возможно ли создать ахроматическую линзу. Во всех упомянутых случаях Эйлер отстаивал правильную позицию.

6 слайд

Описание слайда:

Теория чисел П. Л. Чебышёв писал: «Эйлером было положено начало всех изысканий, составляющих общую теорию чисел». Большинство математиков XVIII века занимались развитием анализа, но Эйлер пронёс увлечение древней арифметикой через всю свою жизнь. Благодаря его трудам интерес к теории чисел к концу века возродился. Эйлер продолжил исследования Ферма, ранее высказавшего (под влиянием Диофанта) ряд разрозненных гипотез о натуральных числах. Эйлер строго доказал эти гипотезы, значительно обобщил их и объединил их в содержательную теорию чисел. Он ввёл в математику исключительно важную «функцию Эйлера» и сформулировал с её помощью «теорему Эйлера». Эйлер создал теорию сравнений и квадратичных вычетов, указав для последних критерий

7 слайд

Описание слайда:

8 слайд

Описание слайда:

Математический анализ Одна из главных заслуг Эйлера перед наукой - монография «Введение в анализ бесконечно малых» (1748). В 1755 году выходит дополненное «Дифференциальное исчисление», а в 1768-1770 годах - три тома «Интегрального исчисления». В совокупности это фундаментальный, хорошо иллюстрированный примерами курс, с продуманной терминологией и символикой, откуда многое перешло и в современные учебники. Собственно современные методы дифференцирования и интегрирования были опубликованы в данных трудах. Основание натуральных логарифмов было известно ещё со времён Непера и Якоба Бернулли, однако Эйлер дал настолько глубокое исследование этой важнейшей

9 слайд

Описание слайда:

10 слайд

Описание слайда:

тоже его заслуга, так же как их символика и обобщение на комплексный случай. Формулы, часто именуемые в учебниках «условия Коши - Римана», более правильно было бы назвать «условиями Даламбера - Эйлера». Он первый дал систематическую теорию интегрирования и используемых там технических приёмов, нашёл важные классы интегрируемых дифференциальных уравнений. Он открыл эйлеровы интегралы - ценные классы специальных функций, возникающие при интегрировании: бета-функция и гамма-функция Эйлера. Одновременно с Клеро вывел условия интегрируемости линейных дифференциальных форм от двух или трёх переменных (1739). Первый ввёл двойные интегралы. Получил серьёзные результаты в теории эллиптических функций, в том числе первые теоремы сложения.

11 слайд

Описание слайда:

Геометрия В элементарной геометрии Эйлер обнаружил несколько фактов, не замеченных Евклидом: три высоты треугольника пересекаются в одной точке (ортоцентре); в треугольнике ортоцентр, центр описанной окружности и центр тяжести лежат на одной прямой - «прямой Эйлера»; основания трёх высот произвольного треугольника, середины трёх его сторон и середины трёх отрезков, соединяющих его вершины с ортоцентром, лежат все на одной окружности (окружности Эйлера); число вершин (В), граней (Г) и рёбер (Р) у любого выпуклого многогранника связаны простой формулой: В + Г = Р + 2.

12 слайд

Описание слайда:

Второй том «Введения в анализ бесконечно малых» (1748) - это первый в мире учебник по аналитической геометрии и основам дифференциальной геометрии. Эйлер дал классификацию алгебраических кривых 3-го и 4-го порядков, а также поверхностей второго порядка. Термин «аффинные преобразования» впервые введён в этой книге вместе с теорией таких преобразований. В 1732 году Эйлер вывел общее уравнение геодезических линий на поверхности. В 1760 году вышли фундаментальные «Исследования о кривизне поверхностей». Эйлер обнаружил, что в каждой точке гладкой поверхности имеются два нормальных сечения с минимальным и максимальным радиусами кривизны и что плоскости их взаимно перпендикулярны. Вывел формулу связи кривизны сечения поверхности с главными кривизнами.

13 слайд

Описание слайда:

которая может быть наложена на плоскость без складок и разрывов. Эйлер, однако, даёт здесь вполне общую теорию метрики, от которой зависит вся внутренняя геометрия поверхности. Позже исследование метрики становится у него основным инструментом теории поверхностей. В треугольнике ABC ортоцентр H, центр U описанной окружности и центроид S лежат на одной «прямой Эйлера» В 1771 году Эйлер опубликовал сочинение «О телах, поверхность которых можно развернуть на плоскость». В этой работе введено понятие развёртывающейся поверхности, то есть поверхности,

14 слайд

Описание слайда:

Комбинаторика Эйлер много внимания уделял представлению натуральных чисел в виде сумм специального вида и сформулировал ряд теорем для вычисления числа разбиений. При решении комбинаторных задач он глубоко изучил свойства сочетаний и перестановок, ввёл в рассмотрение числа Эйлера. Эйлер исследовал алгоритмы построения магических квадратов методом обхода шахматным конём. Две его работы (1776, 1779) заложили фундамент общей теории латинских и греко-латинских квадратов, огромная практическая ценность которой выяснилась после создания Рональдом Фишером методов планирования эксперимента, а также в теории кодов, исправляющих ошибки.

15 слайд

Описание слайда:

Прямая Эйлера Деление отрезка в данном отношении Пусть A,О, В – данные точки плоскости, и известно, что точка G делит отрезок AB в отношении k: AG/GB = k. Зададим вектора ОА, OG, OB, AG, GB. Выразим вектор OG через векторы OA и OB. Для этого подставим в равенство AG=k * GB выражения всех векторов через OG, OA и OB (по правилу треугольника): OG-OA=k(OB-OG). Решая это уравнение относительно OG, получим: OG= (OA+kOB)/(k+1) . Например, если G – середина отрезка AB, то k=1 и OG= 0,5(OA+OB). А О В G

16 слайд

Описание слайда:

Прямая Эйлера Прямая Эйлера – прямая, которой принадлежат ортоцентр (точка пересечения высот) , центроид (точка пересечения медиан) и центр описанной окружности треугольника. Дан прямоугольный треугольник АСВ. Проведем медиану СО. Середина O гипотенузы AB является центром описанной около него окружности. Центроид G делит медиану CO в отношении 2:1, считая от вершины C. Катеты AC и BC являются высотами треугольника, поэтому вершина C прямого угла совпадает с ортоцентром H треугольника. Таким образом, точки O,G,H лежат на одной прямой, причем OH=3OG. = Н А С В

17 слайд

Описание слайда:

G1 P Прямая Эйлера Теорема. Медианы треугольника АВС пересекаются в одной точке G и делятся ею в отношении 2:1, считая от вершины, причем 3PG=PA+PB+PC, (2) где P – любая точка плоскости или пространства. Доказательство. Возьмем на медиане CD треугольника AСВ точку G, определяемую соотношением |CG|:|GD|=2:1. Возьмем произвольную точку P. Зададим вектора: PG, PC, PB, PA. Согласно формуле (1), PG = (РС+2РD), PD = 0,5(PA + PB), откуда 3PG = (PA + PB + PC). Вычисляя вектор PG1 с концом в точке G1, делящей любую из двух других медиан треугольника в отношении 2:1 (считая от вершины), мы получим то же самое выражение: 3PG1= (PA + PB + PC), Поэтому PG=PG1, и точка G совпадает с точкой G1. Следовательно, все три медианы треугольника пересекаются в одной точке G, определяемой соотношением (2). А С В D P

18 слайд

Описание слайда:

Теорема Эйлера о многогранниках Имеется много доказательств теоремы Эйлера. В одной из них используется формула для суммы углов многоугольника. Рассмотрим это доказательство. Возьмем снаружи многогранника точку О вблизи от какой-либо грани F и спроектируем остальные грани на F из центра О. Их проекции образуют разбиение грани F на многоугольники. Подсчитаем двумя способами сумму α углов всех полученных многоугольников и самой грани F. Сумма угов n-угольника равна π(n - 2). Сложим эти числа для всех граней (включая грань F). Сумма членов вида πn равна общему числу сторон всех

19 слайд

Описание слайда:

Теорема Эйлера о многогранниках Некоторые следствия из теоремы 1. Р + 6≤ 3В и Р + 6≤ 3Г; Доказательство: Перепишем соотношение Эйлера дважды, один раз в виде Р + 2 = В + Г И другой раз в виде 4 = 2В - 2Р + 2Г Складывая эти равенства, получаем Р + 6 = 3В + 3Г - 2Р Так как у каждой грани многогранника не менее трех сторон, то 3Г≤ 2Р. Отсюда сразу получаем Р + 6≤ 3В. Утверждение доказано.

20 слайд

Описание слайда:

2.Сумма плоских углов всех граней многогранника равна 2πВ- 4π. (Теорема Декарта) Доказательство: Обозначим через Гi число i-угольных граней в многограннике М. Ясно, что Г = Г3 + Г4 + Г5 + … Ясно также, что каждая i-угольная грань содержит i ребер многогранника. С другой стороны, каждое ребро многогранника принадлежит в точности двум граням. Поэтому в сумме 3Г3 + 4Г4 + 5Г5 + … каждое ребро многогранника подсчитано, причем подсчитано дважды. Отсюда имеем 2Р = 3Г3 + 4Г4 + 5Г5 +… Рассмотрим теперь сумму S плоских углов многогранника: S = Г3 ·π + Г4 · 2π + Гi · (i -2)π + … С учетом полученных соотношений и теоремы Эйлера соотношение можно переписать так: S = Г3 (3 - 2)π + Г4 (4 -2)π + Гi (i - 2)π + … = 2Рπ - 2Гπ = 2Вπ - 4π.

21 слайд

Описание слайда:

граней, т.е. 2Р- ведь каждое из Р рёбер принадлежит двум граням. А так как у нас всего Г слагаемых, α = π(2Р - 2Г). Теперь найдем сумму углов при каждой вершине разбиения и сложим эти суммы. Если вершина лежит внутри грани F, то сумма углов вокруг нее равна 2π. Таких вершин В-k, где k- число вершин самой грани F, а значит, их вклад равен 2π(В - k). Углы при вершинах F считаются в сумме дважды (как углы F и как углы многоугольников разбиения); их вклад равен 2π(k - 2). Таким образом, α = 2π(B - k) + 2π(k - 2) = 2π(B - 2). Приравнивая два результата и сокращения на 2π, получаем требуемое равенство Р - Г = В - 2

22 слайд

Описание слайда:

Теория графов и задача Эйлера Издавна среди жителей Кёнигсберга была распространена такая загадка: как пройти по всем мостам, не проходя ни по одному из них дважды? Многие кёнигсбержцы пытались решить эту задачу, как теоретически, так и практически, во время прогулок. Но никому это не удавалось, однако доказать, что это даже теоретически невозможно. В 1736 году задача о семи мостах заинтересовала выдающегося математика, члена Петербургской академии наук Леонарда Эйлера, Эйлер пишет о том, что он смог найти правило, пользуясь которым легко определить есть ли у неё решение. На упрощённой схеме части города (графе) мостам соответствуют линии (рёбра графа), а частям города - точки соединения линий (вершины графа). Б А В Г

Поделиться