Металлический водород применение. Что такое металлический водород

Водородная энергетика, технологический прогресс и экологическая безопасность в отрасли черной металлургии.
Прямое восстановление оксида железа водородом.

Метод прямого восстановления железа водородом в наши дни, как технологический процесс, остался без изменения – специально подготовленная, то есть обогащенная, руда, - концентрат, где содержится основной окисел железа восстанавливается в шахтной печи с помощью твердого топлива, как это было в древности, или для этой цели используется конвертированный газ – природный метан, но преобразованный в смесь водорода и угарного газа (СО).

3Fe2O3+H2= 2Fe3O4+H 20
Fe3O4+H2=3FeO+H 2O
FeO+H2=Fe+H 2O

Как установлено в настоящее время, можно восстанавливать концентраты руды, которые еще не превращены в окатыши. Более того, оказалось, что концентрат восстанавливается даже с большей скоростью, чем изготовленные из него окатыши. Однако на пути к реализации этого процесса стоят трудности чисто технологического характера.

Наиболее интересным способом восстановления оксида железа, является возможность использования водорода в режиме горения. Сам процесс восстановления пойдет достаточно быстро, более того, при этом не возникает лишних примесей: продукт восстановления – железо и вода. Однако получение и хранение водорода сопряжено со множеством чисто технических и экономических трудностей. Поэтому водород пока что используют лишь для получения металлических порошков.

Существует технология среднетемпературного восстановления оксида железа, когда протекает процесс горения и прямого воздействия водорода при температуре 470-8100С. Восстановитель – водород или в чистом виде, или с примесью окиси углерода. Железо, естественно, находится в твердом состоянии, образуя при восстановлении своеобразную губку.

Анализ приведенных выше данных дает основания для следующих выводов:

    Среди реакций восстановления оксидов железа водородом только реакция (1.1) является экзотермической. С ростом температуры отношение (%Н2 О) / (%Н2) в равновесной газовой фазе этой реакции будет уменьшаться;

    Реакции (1.4), (1.7), (1.10) являются эндотермическими. Поэтому с ростом температуры отношение (%Н2 О) / (%Н2) в равновесной газовой фазе этих реакций будет увеличиваться.

Влияние температуры на изменение состава равновесной газовой фазы для каждой из реакций восстановления оксидов железа водородом показано на рисунке 1 пунктирными линиями.

Следует обратить внимание на то, что кривые, характеризующие составы равновесных газовых смесей для реакций восстановления оксидов железа оксидом углерода и водородом, пересекаются при температуре 8100С. Из анализа реакции водяного газа известно, что при соблюдении условия

Оксид углерода и водород при этой температуре обладают одинаковым химическим сродством к кислороду.

При температурах выше 8100 С водород обладает большим химическим сродством к кислороду. Поэтому при восстановлении оксидов железа водородом объемное содержание восстановителя в газовой фазе может быть меньше, чем при восстановлении оксидом углерода.

При температурах ниже 8100 С более высоким химическим сродством к кислороду обладает оксид углерода.

Конечным продуктом везде являются железо, вода и углекислый газ, причем воду можно снова использовать для получения водорода и кислорода. Таким образом появляются реальные возможности осуществить замкнутый цикл восстановления железа водородом и создать безотходное производство.

Однако до сих пор водород получают двумя испытанными методами – гидролизом воды и ее электролитическим разложением, проще говоря, электролизом. Существует, правда, химическое разложение, более выгодное, но оно не столь распространено, на что имеется ряд чисто технических причин. Поиск новых способов продолжается, ибо важность проблемы несомненна.

Использование водорода для нужд черной металлургии – реальность сегодняшнего дня, и это возможно с применением водородных турбогенераторных установок, созданных на основе научного открытия НППСО «Грантстрой» авторами Аракелян Г.Г., Аракелян А.Г., Аракелян Гр.Г. – ранее неизвестного явления двухстадийного высокотемпературного окисления углеводородов водой (диплом № 425) и изобретения «Способ получения водородсодержащего газа в турбогенераторной установке» (патенты № 117145 от 20 июня 2012 г., № 2269486 от 10 февраля 2006 г., № 2478688 от 10 апреля 2013 г.).

Впервые в мировой практике при проведении научных и опытно – конструкторских работ при испытании водородной турбогенераторной установки нового поколения в соответствии с патентом на изобретение № 2678688, учеными ЗАО НППСО «Грантстрой» было выявлено уникальное новое явление – восстановление окиси железа водородом.

Данное обстоятельство не входило в план и программу лабораторных работ по изучению получения водорода в турбогенераторной установке. При анализе газов, выходящих из водородной турбогенераторной установки, научными работниками была использована промежуточная горизонтальная газоотводящая труба диаметром 279 мм, толщиной стенки 8 мм и длиной 2500 мм, полностью покрытая окисью железа с наружной и внутренней сторон, находившейся около 10 лет под воздействием окружающей среды (осадки и т.д.) (рис.2)

Рис. 2. Начало проведения лабораторных исследований.

Задачами, поставленными перед учеными в данный период испытаний, являлись определение температуры горения водорода на выходе газоотводящей трубы при помощи термопара ТП (предел определения температуры до 1500оС) и анализ газов с применение прибора «Тесто-300». Время проведения эксперимента составило около 35 минут. За этот период было обнаружено, что воздействие водорода при температуре горения 900оС на используемую в данном опыте газоотводящую трубу способствовало процессу восстановления окиси железа в внутренней стороны на 100% по всей толщине и частично с наружной стороны за счет воздействия горючего водорода, который выходил в ограниченном количестве. (рис.3)

Рис. 3. Восстановление окиси железа водородом.

Достоверные факты, опытно-экспериментальные исследования и как показано на Рис.1, что кривые 5, 5а и реакция восстановления оксида железа пересекаются при температуре горения водорода 9000С – все это даёт полное основание заявить о возможности применения водородных турбогенераторных установок в металлургии для восстановления оксида железа водородом с фантастически низкой себестоимостью, что открывает возможность приступить к переработке отходов на рудниках в виде оксида железа, объем которых во всем мире составляет около 1 трлн.250 млрд. тонн, и которые нарушают экологическую стабильность в регионах, активно добывающих и перерабатывающих железную руду.

Предварительные расчеты и первые эксперименты показали: возможность получать водород с такой низкой себестоимостью, что «водородная металлургия» обретет, наконец, надежную экономическую основу с учетом полной экологической безопасности водородного восстановления оксида железа.

Как видно, существует необходимость введения в металлургию прямое водородное восстановление оксида железа, обеспечивающее безотходное производство в черной металлургии.

Прямое водородное восстановление оксида железа – только начало технологического прогресса в черной металлургии. Но и остальные звенья – будь то конвертеры, электропечи, заводы-автоматы, аппараты малооперационной технологии – требуют хорошего исходного сырья. Им будет восстановленный водородом оксид железа.

Металлургию будущего не без основания часто называют водородной. В настоящее время водород обходится дорого. Его получение, хранение и транспортировка сопряжены со множеством чисто технических проблем. Однако произведенные эксперименты и предварительные расчеты показывают, что можно получать водород с такой низкой себестоимостью, используя изобретение ЗАО НППСО «Грантстрой», что «водородная металлургия» обретет надежную экономическую основу. А если учесть полную экологическую безопасность водородных турбогенераторных установок, то сомнение в том, что именно они предопределяют будущее металлургии, открывающее огромные возможности в современном мире.

(В данной статье в том числе использованы материалы с веб сайтов и учебных пособий)

Доктор наук, заслуженный
рационализатор-изобретатель РФ,
заслуженный строитель России Г.Г. Аракелян

Текущая версия страницы пока не проверялась

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от, проверенной 27 мая 2017; проверки требуют.

Металли́ческий водоро́д - совокупность фазовых состояний водорода , находящегося при крайне высоком давлении и претерпевшего фазовый переход . Металлический водород представляет собой вырожденное состояние вещества и, по некоторым предположениям, может обладать некоторыми специфическими свойствами - высокотемпературной сверхпроводимостью и высокой удельной теплотой фазового перехода.

В 1930-х годах британский ученый Джон Бернал предположил, что атомарный водород, состоящий из одного протона и одного электрона и представляющий собой полный аналог щелочных металлов, может оказаться стабильным при высоких давлениях . В 1935 году Юджин Вигнер и X. Б. Хантингтон провели соответствующие расчёты. Гипотеза Бернала нашла подтверждение - согласно полученным расчётам, молекулярный водород переходит в атомарную металлическую фазу при давлении около 250 тыс. атмосфер (25 ГПа) со значительным увеличением плотности . В дальнейшем оценка давления, требуемого для фазового перехода, была повышена, но условия перехода всё же считаются потенциально достижимыми. Предсказание свойств металлического водорода ведётся теоретически. Попытки получения, начатые в 1970-х годах, привели к возможным эпизодам водорода в 1996, 2008 и 2011 году, пока, наконец, в 2017 году профессор Айзек Сильвера и его коллега Ранга Диас не добились получения стабильного образца при давлении 5 млн атмосфер , однако камера, где хранился образец, под давлением разрушилась, и образец был потерян.

Считается, что большие количества металлического водорода присутствуют в ядрах планет-гигантов - Юпитера, Сатурна - и крупных экзопланет . Благодаря гравитационному сжатию под газовым слоем должно находиться ядро из металлического водорода.

При увеличении внешнего давления до десятков ГПа коллектив атомов водорода начинает проявлять металлические свойства. Ядра водорода (протоны) сближаются друг с другом существенно ближе боровского радиуса , на расстояние, сравнимое с длиной волны де Бройля электронов. Таким образом, сила связи электрона с ядром становится нелокализованной, электроны слабо связываются с протонами и формируют свободный электронный газ так же, как в металлах.

Жидкая фаза металлического водорода отличается от твердой фазы отсутствием дальнего порядка . Имеется дискуссия о допустимом диапазоне существования жидкого металлического водорода. В отличие от гелия-4 , жидкого при температуре ниже 4,2 и нормальном давлении благодаря нулевой энергии нулевых колебаний , массив плотно упакованных протонов обладает значительной энергией нулевых колебаний. Соответственно, переход от кристаллической фазы к неупорядоченной ожидается при ещё более высоких давлениях. Исследование, проведенное Н. Ашкрофтом, допускает область жидкого металлического водорода при давлении около 400 ГПа и низких температурах . В других работах Е. Бабаев предполагает, что металлический водород может представлять собой металлическую сверхтекучую жидкость .

В 2011 году было сообщено о наблюдении жидкой металлической фазы водорода и дейтерия при статическом давлении 260-300 ГПа. , что вновь вызвало вопросы в научном сообществе .

Научное сообщество скептически отнеслось к данной новости , ожидая повторного эксперимента .

Метастабильные соединения металлического водорода перспективны как компактное, эффективное и чистое топливо. При переходе металлического водорода в обычную молекулярную фазу высвобождается в 20 раз больше энергии, чем при сжигании смеси кислорода и водорода - 216 МДж/кг

Гарвардские ученые Айзек Сильвера и Ранга Диас получили металлический водород ! Отчет об этом событии был представлен 26 января 2017 г. в журнале Science (Ranga P. Dias, Isaac F. Silvera. Observation of the Wigner-Huntington transition to metallic hydrogen).

Суть эксперимента состояла в том, что между алмазами, в условиях невероятно огромных давлении и температуры, был зажат водород. Указывается, что показатели давления в этот момент превышали параметры в центре Земли! К сожалению, зафиксировать металлическое состояние при нормальных температурах и давлении пока не получилось. Однако, ученые собираются продолжать свою серию опытов, при более низком давлении. В случае успеха, металлический водород ждет большое будущее.

Металлический водород: перспективы применения

Ожидается, что это вещество найдет применение как топливо для космических ракет. Эффект от применения металлического водорода в таком качестве по расчетам превысит эффект существующих ракетных топлив более чем в 4 раза, что позволит выводить на орбиту более тяжелые грузы.
Очень перспективно использование металлического водорода в качестве сверхпроводника. Сейчас проводники изготавливаются из разных металлов, но даже в лучшем случае, потери электрического тока при прохождении через проводник достигают 15%. В случае использования металлического водорода потери приблизились бы к нулю. Так что

Фотографии твердого водорода при давлении 2,05 миллиона атмосфер (a, образец прозрачный и свет проходит сквозь него), 4,15 миллиона атмосфер (b, образец непрозрачный, не отражает свет), 4,95 миллиона атмосфер (с, образец непрозрачный, отражает свет).

Физики из Гарвардского университета впервые синтезировали металлический водород. Чтобы добиться этого, ученые сжали водород в алмазной наковальне под давлением почти в 5 миллионов атмосфер и охладили до 5,5 кельвина. Теоретики предсказывают , что материал может оказаться комнатнотемпературным сверхпроводником, а также обладать рядом других необычных свойств. Независимые эксперты подвергают открытие сомнению. Исследование опубликовано в журнале Science (препринт работы), его обзор приводит журнал Nature .

Водород - самый распространенный элемент во Вселенной. В обычных условиях он существует в виде бесцветного газа, каждая частица которого состоит из двух атомов водорода. Если сжать обычный водород давлениями в тысячи атмосфер, то можно получить его сначала в жидком, а потом и в твердом виде - прозрачного, не проводящего электричество материала. В 1935 году физики Вигнер и Хантингтон теоретически предсказали , что дополнительно увеличив давление можно заставить водород перейти в металлическое состояние.

Этот материал привлек к себе внимание экспериментаторов благодаря своим необычным свойствам - с одной стороны, теоретики предсказывают ему сверхпроводимость при температурах близких к комнатной. С другой стороны, в виде металлической фазы водород запасает огромную энергию и его удобно хранить - это свойство важно для ракетостроения. Попытки синтеза материала начались во второй половине XX века, но до сих пор нельзя с уверенностью сказать, что он был получен.


Фазовая диаграмма водорода. Твердый металлический водород внизу справа.

Ranga P. Dias, Isaac F. Silvera / Science, 2017

Одна из важных проблем синтеза металлического водорода - высокие давления, необходимые для фазового перехода. Вигнер и Хантингтон предсказали, что молекулярный двухатомный водород должен превращаться в металлический одноатомный водород при давлениях около 250 тысяч атмосфер и низких температурах. Это примерно в 250 раз больше, чем давление на дне Марианской впадины. Однако эксперименты показали, что эта оценка не соответствует действительности. Современные исследования предсказывают величину давления фазового перехода в 4-5 миллионов атмосфер - это эквивалентно давлению, которое оказывает объект с массой слона, стоящий на игле с площадью поверхности острия меньше квадратного миллиметра.

Авторы новой работы утверждают, что смогли синтезировать твердый металлический водород с помощью алмазной наковальни, создававшей давление в 4,95 миллиона атмосфер в охлаждаемой жидким гелием ячейке. Этот прибор представляет собой пару высококачественных алмазов, с плоскими отшлифованными гранями наковальни. Их сжимают, вкручивая длинные стальные винты.


Схема эксперимента

R. Dias and I.F. Silvera

Ранее гарвардский коллектив ученых уже предпринимал попытки синтеза металлического водорода - в ходе экспериментов физики выяснили несколько проблем, осложняющих достижение больших давлений. В первую очередь водород способен проникать в алмаз и делать его более хрупким. С ростом давлений это приводит к разрушению «наковальни». Во-вторых, лазерное излучение, используемое для мониторинга состояния ячейки, также может привести к разрушению алмаза (например, инфракрасное излучение способно превратить алмаз в графит). Чтобы избежать этих сложностей авторы модифицировали традиционный эксперимент.

Физики покрыли алмазные поверхности аморфным оксидом алюминия (толщиной 50 нанометров), для предотвращения диффузии водорода. Кроме того, использование лазерного излучения в эксперименте было минимизировано - оценка давлений делалась на основе количества оборотов винта.

Ученые следили за изменениями в образце с помощью микроскопа. При двух миллионах атмосфер водород был прозрачным твердым веществом. При 4,15 миллиона атмосфер образец потемнел и перестал пропускать свет. При давлении 4,95 миллиона атмосфер авторы обнаружили, что образец стал красноватым и начал хорошо отражать свет. Из спектральных данных физики определили, что в твердом водороде возникла большая концентрация свободных носителей заряда (7,7±1,1×10 23 частиц на кубический сантиметр) - в десятки раз больше чем у лития, натрия или калия (щелочных металлов). По словам ученых, это подтверждает металлическую природу материала.

Независимые эксперты, также участвующие в «гонке» синтеза металлического водорода, сомневаются в надежности работы. Во-первых, эксперимент по синтезу металлического водорода был поставлен лишь один раз и не воспроизводился. Во-вторых, свою роль могло сыграть покрытие из оксида алюминия - нет уверенности, что материал не восстановился до металлического алюминия. Евгений Грегорянц, год назад фазу-предшественник металлического водорода, также отмечает, что детальные измерения состояния ячейки были сделаны лишь при пиковых значениях давлений. На их основании нельзя надежно судить о достигнутом давлении, как и на основе количества оборотов винта.

Убедить экспертов может повторение эксперимента и дополнительные тесты. По словам Айзека Сильвера, соавтора работы, решение опубликовать статью с ограниченным количеством подтверждающих тестов было связано с тем, что образец может разрушиться при дальнейшей работе с ним. Сейчас, когда исследование опубликовано, физики планируют провести анализ рамановского рассеяния на металлическом водороде и другие тесты.

Это не первое заявление ученых о синтезе металлического водорода. В июле 2016 года группа исследователей под руководством Айзека Сильвера о синтезе жидкого металлического водорода (и также подверглась критике). В 2011 году о синтезе материала заявляли Михаил Еремец и Иван Троян из Химического института общества Макса Планка, однако, по словам химиков, надежных подтверждений до сих пор получено не было. Считается, что встретить жидкий металлический водород можно, например, в недрах Юпитера.

Владимир Королёв

Металлический водород, который находится под давлением порядка четырех с половиной миллионов атмосфер, может иметь наибольшую критическую температуру перехода в ряду высокотемпературных проводников. Согласно предварительным расчетам итало-германской группы ученых физиков-теоретиков, элемента равна 242 К (минус тридцать один градус Цельсия).

Газообразный водород превращается в жидкость при температуре 20 К. Если снизить температуру ещё на 6 К, то можно перевести элемент в твердое состояние. Ханингтон и Вигнер в 1935-м году предположили в лаборатории. По их мнению, необходимо было использовать высокое давление - около 25 Гпа (один Гпа примерно равен десяти тысячам атмосфер). Так, под воздействием высокого давления элемент превратится в изотоп водорода - из диэлектрического элемента в проводящий. Следует отметить, что газ в исходном состоянии обладает проводящими свойствами. Так же, как и металлы, элемент проводит электричество, при этом он может и не находиться в твердом состоянии. Другими словами, водород может представлять собой и жидкость, обладающую

В 1971-м году в свет вышла работа советских ученых-теоретиков во главе с Каганом. Группа физиков доказывала, что металлический водород может являться метастабильным. Это означает, что после прекращения воздействия элемент не перейдет в свое первоначальное состояние - газ, обладающий диэлектрическими свойствами. Вместе с этим до сих пор неясно, будет ли эта стадия достаточно продолжительной для того, чтобы успеть использовать металлический водород.

Первый успех в опытном плане был получен в 1975-м году, в феврале. Группа ученых во главе с Верещагиным создала металлический водород. Под воздействием температуры в 4,2 К в тонком слое элемента при помощи алмазных наковален подвергнутом также воздействию давления порядка 300 Гпа наблюдалось снижение электрического сопротивления газа в миллионы раз. Это свидетельствовало о переходе водорода в металлическое состояние.

Для получения высокого давления применяется алмазная наковальня. Она представлена в виде двух остриями прижимающихся друг к другу при помощи пресса. В итоге на срезе, диаметр которого - порядка нескольких десятых долей миллиметра, образуется необходимое давление. На этом участке в ячейке располагается охлажденный образец. К образцу в этом же месте подводится оборудование: миниатюрные термопары, электроды и прочие измерительные приборы.

Следующим этапом в работе ученых стало выяснение возможности последующего перехода металлического состояния в сверхпроводящее. Первым задался этой проблемой Нейл Эшкрофт. Теоретик предсказал, что у металлического водорода появятся «экзотические» свойства под воздействием высоких температур, превышающих 200 К.

Сравнительно недавно вышла работа немецких и итальянских физиков. Авторы утверждают, что за счет электрон-фононного механизма формирования куперовских пар достигается рекордный показатель критической температуры - 242 К. Вместе с этим, однако, необходимо и воздействие высокого давления - порядка 450 Гпа, а это, в свою очередь, в четыре с половиной миллиона раз превышает атмосферное давление.

При электрон-фононном формировании куперовских пар при движении в периодической решетке в кристалле электрон притягивает ближайшие ионы, заряженные положительно. При этом происходит незначительная деформация решетки, и на короткое время увеличивается концентрация положительного заряда. За счет увеличенной концентрации притягивается другой электрон. Так, притягиваются оба электрона. При ненулевой температуре происходит колебание ионов около своих состояний равновесия. Фононы - это кванты данных колебаний.

Поделиться