Оптическая (зеркальная) изомерия. Оптическая, или зеркальная, изомерия Какое из нижеприведенных соединений обладает оптической изомерией

«Ну, конечно, воскликнула она,

это же Зазеркальная книга.

Если я поднесу ее к Зеркалу,

Я смогу ее прочесть»

Л. Кэрролл «Алиса в Зазеркалье»

Пространственное строение многих органических молекул связано с существованием оптических изомеров.

Условием образования оптических изомеров является наличие в молекуле атомов углерода в sp 3 -гибридном состоянии, каждый из которых связан с 4 различными заместителями.


В этом случае молекула не обладает плоскостью симметрии и она не совместима со своим зеркальным отражением.

Пространственные оптические изомеры (показана их несовместимость)

Такое вещество обладает оптической активностью, изомеры называются оптическими .

Атом углерода, связанный с 4 различными заместителями(обозначают С*), принято называть асимметричным, оптически активным, хиральным (от греч –cheir -рука, кисти руки являются зеркально отраженными друг другу).

А А оптические изомеры(энантиомеры)

| | в плоскостном изображении

В- С*- D D - C*- В ( плоскостные проекции

| | Фишера)

зеркальная плоскость


Два вещества, полные зеркальные изомеры, носят название энантиомеры.

Если в молекуле один хиральный атом, то два стереоизомера изомера всегда являются энантиомерами.

Общее количество изомеров у молекулы, содержащей несколько асимметрических атомов углерода, зависит от числа хиральных атомов(хиральных центров):

(N - общее количество изомеров, n – число хиральных атомов в молекуле)

Для изображения на плоскости оптических изомеров природных биоактивных молекул(аминокислот, гидроксикислот, моносахаров) используют проекции Фишера:

На плоскость проецируют тетраэдрическую конфигурацию

Относительно асимметрического атома углерода записывают 4 заместителя,

вверху- старшую из всех групп, внизу - радикал, справа и слева – атомы водорода и

функциональные группы(амино, гидрокси, меркапто. галоген) .

Структурные формулы отражают существование молекулы в виде двух изомеров, принадлежащих к стереорядам D и L(D –правый, L – левый)

Запишем формулу 2-гидроксипропановой(молочной) кислоты в виде двух стереоизомеров.

СН 3 - СН - СООН COOH COOH

OH H - C* - OH HO -C* - H

D - лактат L – лактат

Вещество относится к D -ряду , если переход от атома водорода к гидроксигруппе(или любой функциональной) через старшую группу совпадает с движением стрелки на часах.

Вещество относится к L -ряду , если переход от атома водорода к гидроксигруппе(или любой функциональной) через старшую группу осуществляется против движения стрелки на часах.


Как правило, температуры плавления, кипения и другие физико-химические свойства энантиомеров не отличаются Отличить их друг от друга можно только с помощью поляризованного луча света, энантиомеры вращают угол плоскости поляризованного луча на одну величину, но в противоположные стороны. Отклонение плоскости поляризованного луча можно измерить с помощью прибора поляриметра. Если для полного скрещения призм ручку анализатора требуется повернуть вправо, то изомерную форму вещества называют правовращающей (+ d ), а если влево- левовращающей (-l ) .

Знак вращения – свойство вещества. Отнесение к D, L - стереорядам- условный прием, знак вращения и стереоряд не связаны между собой.

Определить истинную конфигурацию вещества, т.е.сделать соотнесение « знак вращения- стереоряд» можно, используя конфигурационный стандарт М.А.Розанова .

В качестве стандарта используют D и L –глицериновый альдегид. Оказалось, что

(+d )-глицериновый альдегид соответствует D -стереоряду, а (- l )- соответствует -L -стереоряду.

H - C* - OH HO -C* - H

СН 2 ОН СН 2 ОН

(+) D –глицеиновый альдегид (-) L –глицериновый альдегид

Биологически активное соединение(знак вращения его определяется с помощью поляриметра) путем химических реакций превращают в глицериновый альдегид (+ d или - l). Самая значительная трудность состоит в том, чтобы асимметрический атом углерода не изменил конфигурацию на противоположную в процессе химических реакций.

Равная по массе или по количеству вещества смесь двух энантиомеров является оптически неактивной. Такую смесь называют рацемической.

Особый случай составляют вещества, в которых несколько хиральных атомов углерода, но и есть ось симметрии. В этом случае число энантиомеров изменяется и возникает внутренний рацемат – мезоформа. Примером является винная кислота-

2,3-дигидроксибутандиовая.

НООС - СН - СН - СООН

Введение

1. Оптическая активность

1.1 Оптически активные вещества

1.2 Физические причины оптической активности

1.2 а. Феноменологическая модель

1.2 б. Квантовая теория

1.2 в. Корпускулярная теория

2. Хиральные молекулы

2.1 Точечные группы симметрии

2.1 а. Собственная ось симметрии

2.1 б. Несобственная ось симметрии

2.1 в. Типы точечных групп симметрии

2.2 Симметричное определение хиральности

2.3 Типы хиральности

3. Номенклатура энантиомеров

3.1 По конфигурации: R - и S

3.2 По оптической активности: +/-

3.3 По конфигурации: D - и L-

4. Методы определения конфигурации

4.1 Определение абсолютной конфигурации

4.1 а. Дифракция рентгеновских лучей

4.1 б. Теоретический расчет оптического вращения

4.2 Определение относительной конфигурации

4.2 а. Химическая корреляция

4.2 б. Установление относительной конфигурации с помощью физических методов

5. Методы разделения энантиомеров

5.1 Расщепление через диастереомеры

5.2 Хроматографическое расщепление

5.3 Механическое расщепление

5.4 Ферментативное расщепление

5.5 Установление оптической чистоты

Заключение

Литература

Введение

Среди органических соединений встречаются вещества, способные вращать плоскость поляризации света. Это явление называют оптической активностью, а соответствующие вещества - оптически активными. Оптически активные вещества встречаются в виде пар оптических антиподов - изомеров, физические и химические свойства которых в обычных условиях одинаковы, за исключением одного - знака вращения плоскости поляризации. (Если один из оптических антиподов имеет, например, удельное вращение (+20 о, то другой - удельное вращение - 20 о).

Оптическая изомерия появляется тогда, когда в молекуле присутствует асимметрический атом углерода; так называют атом углерода, связанный с четырьмя различными заместителями. Возможны два тетраэдрических расположения заместителей вокруг асимметрического атома. Обе пространственные формы нельзя совместить никаким вращением; одна из них является зеркальным изображением другой:

Так же этот вид изомерии называют оптической изомерией, зеркальной изомерией или энантиомерией. Обе зеркальные формы составляют пару оптических антиподов или энантиомеров.

В 1815 французский физик Жан Батист Био и немецкий физик Томас Зеебек установили, что некоторые органические вещества (например, сахар или скипидар) обладают свойством вращать плоскость поляризации света, в кристаллическом, в жидком, растворенном и даже газообразном состоянии (Впервые это явление обнаружил в 1811г. французский физик Франсуа Доминик Араго у кристаллов кварца). Так было доказано, что оптическая активность может быть связана не только с асимметрией кристаллов, но и с каким-то неизвестным свойством самих молекул. Оказалось, что некоторые химические соединения могут существовать в виде как право-, так и левовращающих разновидностей, причем самый тщательный химический анализ не обнаруживает между ними никаких различий. Это был новый тип изомерии, которую назвали оптической изомерией. Оказалось, что кроме право - и левовращающих, есть и третий тип изомеров - оптически неактивные. Это обнаружил в 1830 знаменитый немецкий химик Йёнс Якоб Берцелиус на примере виноградной (дигидроксиянтарной) кислоты НООС-СН (ОН) - СН (ОН) - СООН: эта кислота оптически неактивна, а винная кислота точно такого же состава обладает в растворе правым вращением. Позднее была открыта и не встречающаяся в природе "левая" винная кислота - антипод правовращающей.

Различить оптические изомеры можно с помощью поляриметра - прибора, измеряющего угол поворота плоскости поляризации. Для растворов этот угол линейно зависит от толщины слоя и концентрации оптически активного вещества (закон Био). Для разных веществ оптическая активность может изменяться в очень широких пределах. Так, в случае водных растворов разных аминокислот при 25° С удельная активность (она обозначается как D и измеряется для света с длиной волны 589 нм при концентрации 1 г/мл и толщине слоя 10 см) равна - 232° для цистина, - 86,2° для пролина, - 11,0° для лейцина, +1,8° для аланина, +13,5° для лизина и +33,2° для аспарагина.

Современные поляриметры позволяют измерять оптическое вращение с очень высокой точностью (до 0,001°). Подобные измерения позволяют быстро и точно определить концентрацию оптически активных веществ, например, содержание сахара в растворах на всех стадиях его производства - начиная от сырых продуктов и кончая концентрированным раствором и патокой.

Оптическую активность кристаллов физики связывали с их асимметричностью; полностью симметричные кристаллы, например, кубические кристаллы поваренной соли оптически неактивны. Причина же оптической активности молекул долгое время оставалась совершенно загадочной. Первое открытие, проливавшее свет на это явление, сделал в 1848 никому тогда не известный Луи Пастер. Пастер, который выделил два антипода винной кислоты, которые получили название энантиомеров (от греч. enantios - противоположный). Пастер ввел для них обозначения L - и D-изомеров (от латинских слов laevus - левый и dexter - правый). Позднее немецкий химик Эмиль Фишер связал эти обозначения со строением двух энантиомеров одного из наиболее простых оптически активных веществ - глицеринового альдегида ОНСН2-СН (ОН) - СНО. В 1956 по предложению английских химиков Роберта Кана и Кристофера Ингольда и швейцарского химика Владимира Прелога для оптических изомеров были введены обозначения S (от лат. sinister - левый) и R (лат. rectus - правый); рацемат обозначают символом RS. Однако по традиции широко используются и старые обозначения (например, для углеводов, аминокислот). Следует отметить, что эти буквы указывают лишь на строение молекулы ("правое" или "левое" расположение определенных химических групп) и не связаны с направлением оптического вращения; последнее обозначают знаками плюс и минус, например, D (-) - фруктоза, D (+) - глюкоза.

Теория, объясняющая отличие друг от друга молекул антиподов была создана голландским ученым Вант-Гоффом. Согласно этой теории, молекулы, как и кристаллы, могут быть "правыми" и "левыми", являясь зеркальным отражением друг друга. Подобные структуры, которые отличаются друг от друга как правая рука от левой, получили название хиральных (от греч. heir - рука). Таким образом, оптическая активность - следствие пространственной изомерии (стереоизомерии) молекул.

оптическая изомерия эвантиомер хиральность

Теория Вант-Гоффа, заложившая основы современной стереохимии, завоевала общее признание, а ее создатель в 1901 стал первым лауреатом Нобелевской премии по химии.

1. Оптическая активность

Оптическая активность - это способность среды (кристаллов, растворов, паров вещества) вызывать вращение плоскости поляризации проходящего через нее оптического излучения (света).

Изомеры - вещества с одинаковым строением молекулы, но разными химическим строением и свойствами.

Виды изомерии

I . Структурная - заключается в различной последовательности соединения атомов в цепи молекулы:

1) Изомерия цепи

Следует отметить, что атомы углерода в разветвленной цепи различаются типом соединения с другими углеродными атомами. Так, атом углерода, связанный только с одном другим углеродным атомом, называется первичным , с двумя другими атомами углерода - вторичным , с тремя - третичным , с четырьмя - четвертичным .

2) Изомерия положения


3) Изомерия межклассовая

4) Таутомерия

Таутомери́я (от греч. ταύτίς — тот же самый и μέρος — мера) — явление обратимой изомерии, при которой два или более изомера легко переходят друг в друга. При этом устанавливается таутомерное равновесие, и вещество одновременно содержит молекулы всех изомеров в определённом соотношении. Чаще всего при таутомеризации происходит перемещение атомов водорода от одного атома в молекуле к другому и обратно в одном и том же соединении.

II. Пространственная (стерео) - обусловлена различным положением атомов или групп относительно двойной связи или цикла, исключающих свободное вращение соединённых атомов углерода

1. Геометрическая (цис -, транс - изомерия)


Если атом углерода в молекуле связан с четырьмя различными атомами или атомными группами, например:

то возможно существование двух соединений с одинаковой структурной формулой, но отличающихся пространственным строением. Молекулы таких соединений относятся друг к другу как предмет и его зеркальное изображение и являются пространственными изомерами.

Изомерия этого вида называется оптической, изомеры - оптическими изомерами или оптическими антиподами:

Молекулы оптических изомеров несовместимы в пространстве (как левая и правая руки), в них отсутствует плоскость симметрии.
Таким образом,

  • оптическими изомерами называются пространственные изомеры, молекулы которых относятся между собой как предмет и несовместимое с ним зеркальное изображение.

Оптические изомеры аминокислоты

3. Конформационная изомерия

Следует отметить, что атомы и группы атомов, связанные друг с другом σ -связью, постоянно вращаются относительно оси связи, занимая различное положение в пространстве друг относительно друга.

Молекулы, имеющие одинаковое строение и различающиеся пространственным расположением атомов в результате вращения вокруг С-С связей, называются конформерами.

Для изображения конформационных изомеров удобно пользоваться формулами - проекциями Ньюмена:

Явление конформационной изомерии можно рассмотреть и на примере циклоалканов. Так, для циклогексана характерны конформеры:

Рассмотренные нами ранее виды формул, описывающих органические вещества, показывают, что одной молекулярной может соответствовать несколько разных структурных формул.

Например, молекулярной формуле C2 H6 O соответствуют два вещества с разными структурными формулами - этиловый спирт и диметиловый эфир. Рис. 1.

Этиловый спирт - жидкость, которая реагирует с металлическим натрием с выделением водорода, кипит при +78,50С. При тех же условиях диметиловый эфир - газ, не реагирующий с натрием, кипит при -230С.

Эти вещества отличаются своим строением - разным веществам соответствует одинаковая молекулярная формула.

Рис. 1. Межклассовая изомерия

Явление существования веществ, имеющих одинаковый состав, но разное строение и поэтому разные свойства называют изомерией (от греческих слов «изос» - «равный» и «мерос» - «часть», «доля»).

Типы изомерии

Существуют разные типы изомерии.

Структурная изомерия связана с разным порядком соединения атомов в молекуле.

Этанол и диметиловый эфир - структурные изомеры. Поскольку они относятся к разным классам органических соединений, такой вид структурной изомерии называется еще и межклассовой . Рис. 1.

Структурные изомеры могут быть и внутри одного класса соединений, например формуле C5H12 соответствуют три разных углеводорода. Это изомерия углеродного скелета . Рис. 2.

Рис. 2 Примеры веществ - структурных изомеров

Существуют структурные изомеры с одинаковым углеродным скелетом, которые отличаются положением кратных связей (двойных и тройных) или атомов, замещающих водород. Этот вид структурной изомерии называется изомерией положения .

Рис. 3. Структурная изомерия положения

В молекулах, содержащих только одинарные связи, при комнатной температуре возможно почти свободное вращение фрагментов молекулы вокруг связей, и, например, все изображения формул 1,2-дихлорэтана равноценны. Рис. 4

Рис. 4. Положение атомов хлора вокруг одинарной связи

Если же вращение затруднено, например, в циклической молекуле или при двойной связи, то возникает геометрическая или цис-транс изомерия. В цис-изомерах заместители находятся по одну сторону плоскости цикла или двойной связи, в транс-изомерах - по разные стороны.

Цис-транс изомеры существуют в том случае, когда с атомом углерода связаны два разных заместителя. Рис. 5.

Рис. 5. Цис- и транс- изомеры

Еще один тип изомерии возникает в связи с тем, что атом углерода с четырьмя одинарными связями образует со своими заместителями пространственную структуру - тетраэдр. Если в молекуле есть хотя бы один углеродный атом, связанный с четырьмя разными заместителями, возникает оптическая изомерия . Такие молекулы не совпадают со своим зеркальным изображением. Это свойство называется хиральностью - от греческого с hier - «рука». Рис. 6. Оптическая изомерия характерна для многих молекул, входящих в состав живых организмов.

Рис. 6. Примеры оптических изомеров

Оптическая изомерия называется также энантиомерией (от греческого enantios - «противоположный» и meros - «часть»), а оптические изомеры - энантиомерами . Энантиомеры оптически активны, они вращают плоскость поляризации света на один и тот же угол, но в противоположные стороны: d- , или (+)-изомер, - вправо, l- , или (-)-изомер, - влево. Смесь равных количеств энантиомеров, называемая рацематом , оптически недеятельна и обозначается символом d,l- или (±).

ИСТОЧНИКИ

источник видео - http://www.youtube.com/watch?v=mGS8BUEvkpY

http://www.youtube.com/watch?t=7&v=XIikCzDD1YE

http://interneturok.ru/ru/school/chemistry/10-klass - конспект

источник презентации - http://ppt4web.ru/khimija/tipy-izomerii.html

http://www.youtube.com/watch?t=2&v=ii30Pctj6Xs

http://www.youtube.com/watch?t=1&v=v1voBxeVmao

http://www.youtube.com/watch?t=2&v=a55MfdjCa5Q

http://www.youtube.com/watch?t=1&v=FtMA1IJtXCE

источник презентации - http://mirhimii.ru/10class/174-izomeriya.html

В литературе сплошь и рядом утверждается, что для питания и в качестве структурных элементов нашему метаболизму подходят только левовращающие аминокислоты. Психологически это понятно: природные аминокислоты действительно чаще всего относятся к так называемому L-ряду, а буква L обычно ассоциируется с понятием «левый». Однако такое «отнесение» L-соединений к левовращающим, а соединений D-ряда - к правовращающим абсолютно неверно. Достаточно взглянуть хотя бы на список 23 важнейших аминокислот белка (они приведены, например, в учебнике А. Н. Несмеянова и Н. А. Несмеянова «Начала органической химии»), чтобы убедиться, что левовращающих (для растворов в ледяной уксусной кислоте) - всего лишь семь, меньше трети. Остальные - правовращающие, за исключением оптически неактивного глицина. В «Химической энциклопедии» в списке из 26 наиболее распространенных аминокислот левовращающих и того меньше, всего шесть (23%). Многие путают направление вращения плоскости поляризации света веществом и строение его молекул, которые можно отнести к D- или L-виду.

Поляризация света и оптическая активность

Со времен Ньютона в науке шли споры: свет - это волны или частицы. Томас Юнг сформулировал в 1800 году принцип суперпозиции волн и на его основании объяснил явление интерференции света. В 1808 году Этьен Луи Малюс, экспериментируя с кристаллами исландского шпата (кальцита), открыл явление поляризации света. В 1816 году Огюстен Жан Френель высказал идею о том, что световые волны - поперечные. Френель объяснил и явление поляризации света: в обычном свете колебания происходят хаотично, во всех направлениях, перпендикулярных направлению луча. Но, пройдя через некоторые кристаллы, например исландский шпат или турмалин, свет приобретает особые свойства: волны в нем колеблются только в одной плоскости. Образно говоря, луч такого света подобен шерстяной нитке, которую продернули через узкую щель между двумя острыми лезвиями бритвы. Глаз человека лишь в редких случаях и с трудом может отличить обычный свет от поляризованного, однако это легко сделать с помощью простейших оптических приборов - поляриметров.

Выяснилось также, что при прохождении поляризованного света через некоторые вещества плоскость поляризации поворачивается. Впервые это явление обнаружил в 1811 году Франсуа Доминик Араго у кристаллов кварца. Природные кристаллы кварца имеют неправильное, асимметричное строение, причем они бывают двух типов, которые отличаются по своей форме, как предмет от своего зеркального изображения. Эти кристаллы вращают плоскость поляризации света в противоположных направлениях; их назвали право- и левовращающими.

В 1815 году Жан Батист Био и Томас Зеебек выяснили, что некоторые органические вещества (например, сахар или скипидар) также обладают способностью вращать плоскость поляризации, причем не только в кристаллическом, но и в жидком, растворенном и даже газообразном состоянии. Так было доказано, что оптическая активность может быть связана не только с асимметрией кристаллов, но и с каким-то неизвестным свойством самих молекул. Как и в случае кристаллов, некоторые химические соединения могли существовать в виде право- и левовращающих разновидностей, причем самый тщательный химический анализ не мог обнаружить между ними никаких различий. Такие разновидности назвали оптическими изомерами, а сами соединения - оптически активными. Оказалось, что у оптически активных веществ есть и третий тип изомеров -оптически неактивные. Это обнаружил в 1830 году знаменитый немецкий химик Йене Якоб Берцелиус: виноградная кислота С 4 Н 6 0 6 оптически неактивна, а винная кислота точно такого же состава обладает в растворе правым вращением. Позднее была открыта и не встречающаяся в природе «левая» винная кислота - антипод правовращающей.

В 1828 году Уильям Николь, используя прозрачные кристаллы исландского шпата, сконструировал поляризатор света - «призму Николя». А осуществив в 1839 году комбинацию двух таких призм, он получил поляриметр - прибор для измерения угла поворота плоскости поляризации света. С тех пор такой поляриметр стал одним из самых распространенных приборов в физических лабораториях.

Открытие Пастера

Оптическую активность кристаллов физики связывали с их асимметричностью; полностью симметричные кристаллы, например кубические кристаллы поваренной соли, оптически неактивны. Причина же оптической активности молекул долгое время оставалась загадочной. Первое открытие, проливавшее свет на это явление, сделал в 1848 году Луи Пастер. Еще в студенческие годы он заинтересовался химией и кристаллографией, после окончания Высшей нормальной школы в Париже 26-летний Пастер работал лаборантом у Антуана Балара (первооткрывателя брома).

В ходе исследования Пастер приготовил раствор кислой натриевой соли виноградной кислоты НООС–CHOH–CHOH–COONa, насытил раствор аммиаком и, медленно выпаривая воду, получил красивые призматические кристаллы тетрагидрата натриево-аммониевой соли Na(NH) 4 C 4 H 4 O 6 ·4H 2 O. Кристаллы эти оказались асимметричными. У части кристаллов одна характерная грань находилась справа, а у других - слева, причем по форме два типа кристаллов были как бы зеркальным отражением друг друга. Тех и других кристаллов получилось поровну. Зная, что в подобных случаях кристаллы кварца вращают в разные стороны, Пастер решил проверить, не будет ли наблюдаться это явление и на полученной им соли. Вооружившись увеличительным стеклом и пинцетом, Пастер аккуратно разделил кристаллы на две кучки. Их растворы, как и следовало ожидать, обладали противоположным оптическим вращением, а смесь растворов была оптически неактивной. Было непонятно, почему одно исходное вещество дало кристаллы разной формы. Пастер на этом не остановился. Из каждого раствора он осадил нерастворимую свинцовую или бариевую соль, а действуя на эти соли сильной серной кислотой, вытеснил из них более слабую органическую. Можно было предположить, что в обоих случаях получится исходная виноградная кислота, которая, как мы помним, была неактивной. Каково же было удивление Пастера, когда оказалось, что из одного раствора соли образовалась вовсе не виноградная, а известная правовращающая винная кислота, а из другого раствора получилась такая же кислота, но вращающая влево! До той поры левовращающую винную кислоту никто не видел! Эти кислоты получили название d -винной для правовращающей разновидности (от лат. dexter - правый) и l -винной для левовращающего изомера (от лат. laevus - левый).

Открытие состояло в том, что давно известная неактивная виноградная кислота оказалась смесью равных количеств также известной «правой» винной кислоты и ранее не известной «левой». Именно поэтому их смесь в кристалле или в растворе не обладает оптической активностью. Для такой смеси стали применять название рацемат (от латинского racemus - виноград; на латыни acidum racemicum - виноградная кислота), а два антипода, дающие при смешении в равных количествах оптически неактивную смесь, получили название энантиомеров (от греч. enantios - противоположный). Пастеру повезло: в дальнейшем обнаружили всего несколько подобных случаев кристаллизации при определенной температуре смеси оптически различных кристалликов, достаточно крупных, чтобы их можно было под лупой разделить пинцетом. Более того, натрий-аммониевая соль винной кислоты, с которой работал Пастер, образует кристаллы разной формы только в том случае, если кристаллизация происходит из раствора, температура которого ниже 28°С. При этом выпадает тетрагидрат. При более высоких температурах из раствора выпадают симметричные кристаллы моногидрата.

Вскоре Пастер открыл также четвертую форму винной кислоты. Она была оптически неактивной, но не являлась рацематом, так как разделить ее на антиподы оказалось невозможно. Пастер назвал эту кислоту мезовинной, от греч. mesos - средний, промежуточный. Пастер нашел еще два метода разделения рацемата на два антипода. Биохимический метод основан на избирательной способности некоторых микроорганизмов усваивать только один из изомеров. И здесь Пастеру повезло. Один из аптекарей аптеки дал ему давно стоявшую склянку с виноградной кислотой, в которой завелась зеленая плесень. В своей лаборатории Пастер выяснил: бывшая когда-то неактивной кислота стала левовращающей. Зеленый плесневой грибок Penicillum glaucum в растворе разбавленной виноградной кислоты или ее солей «поедает» только правый изомер, оставляя левый без изменения. Такое же действие оказывает эта плесень на «недеятельную» миндальную кислоту, только в данном случае она ассимилирует левовращающий изомер, не трогая правовращающий. Таких случаев стало известно немало. Например, дрожжи сахаромицета эллипсоидального (Saccharomyces ellipsoideus ), в отличие от Penicillum glaucum , «специализируется» на правом изомере миндальной кислоты, оставляя без изменения левый. Другой способ разделения рацематов был химическим. Для него требовалось заранее иметь оптически активное вещество, которое при взаимодействии с рацемической смесью «выбирало» бы из нее только один энантиомер. Например, оптически активное основание давало с виноградной кислотой оптически активную соль, из которой можно было выделить соответствующий энантиомер винной и кислоты.

Работа Пастера, доказывающая возможность «расщепления» оптически неактивного соединения на антиподы, первоначально вызвала у многих химиков недоверие. Даже сам Био не поверил своему ассистенту, пока собственноручно не повторил его опыт. Вскоре Жозеф Ле Бель с помощью третьего пастеровского метода расщепил несколько спиртов на оптически активные антиподы. Иоганн Вислиценус установил, что существуют две молочные кислоты: оптически неактивная, образующаяся в скисшем молоке (молочная кислота брожения), и правовращающая, которая появляется в работающей мышце (мясомолочная кислота). Подобных примеров становилось все больше, и требовалась теория, объясняющая, чем же отличаются друг от друга молекулы антиподов. Такую теорию создал молодой голландский ученый Вант-Гофф («Химия и жизнь», 2009, № 1). Согласно этой теории, молекулы, как и кристаллы, могут быть «правыми» и «левыми», являясь зеркальным отражением друг друга. Простейший пример - молекулы, в которых имеется так называемый асимметрический атом углерода, окруженный четырьмя разными группами. Возьмем простейшую аминокислоту аланин: две изображенные молекулы невозможно совместить в пространстве никакими поворотами.

Подобные структуры, которые отличаются друг от друга как правая рука от левой, получили название хиральных (от греч. heir - рука).

В винной кислоте два асимметрических атома углерода. Если оба они будут «правыми», получится правовращающая (+)-винная кислота, если «левыми» - левовращающая (–)-винная, если один «левым», а другой - «правым», то получится мезовинная кислота. Если в смеси поровну «правых» и «левых» молекул, вещество в целом будет оптически неактивным. Именно такие вещества и получаются в колбе в результате обычного химического синтеза. И только в живых организмах при участии асимметричных агентов (например, ферментов) образуются асимметричные соединения. Так, в природе преобладают аминокислоты и сахариды только одной конфигурации, а образование их антиподов подавлено. В некоторых случаях разные энантиомеры можно различить и без всяких приборов - когда они по-разному взаимодействует с асимметрическими рецепторами в нашем организме. Яркий пример - аминокислота лейцин: ее правовращающий изомер сладкий, а левовращающий - горький. Заметим, что на естественный вопрос - как появились на Земле первые оптически активные химические соединения - четкого ответа пока нет.

Проблема абсолютной конфигурации

Раньше не было возможности определить, какова в действительности пространственная конфигурация молекул того или иного оптически активного вещества, например упомянутого выше аланина. Однако чисто химическими методами можно было установить аналогичность конфигураций разных веществ. Например, молекулы правовращающего d -глицеринового альдегида были аналогичны по своей конфигурации молекулам левовращающей l -молочной кислоты и правовращающей d -яблочной кислоты. В 1906 году по предложению М. А. Розанова в качестве стандарта для установления относительной конфигурации оптически активных молекул был выбран глицериновый альдегид. При этом Э. Г. Фишер предложил правовращающему глицериновому альдегиду приписать (чисто произвольно) структуру,

в которой звездочкой обозначен асимметрический атом углерода, связанный с четырьмя разными заместителями. На подобных рисунках две «горизонтальные» связи (в данном случае это связи С–Н и С–ОН) располагаются под плоскостью рисунка, а две «вертикальные» связи (С–СНО и С–СН 2 ОН) - над плоскостью. Такой способ изображения называется проекцией Фишера, названной в честь Эмиля Германа Фишера, второго лауреата Нобелевской премии по химии за 1902 год.

Несколько слов о практически неизвестном у нас Розанове. Мартин Андре Розанов (1874–1951) родился на Украине в семье Абрахама и Клары Розенбергов. После окончания классической гимназии в родном Николаеве продолжил образование в Берлине и Париже, а затем в Нью-Йорке. Работал в Нью-Йоркском университете, затем в Питтсбургском институте Меллона, где ему впервые в истории института была предоставлена пожизненная должность профессора химии. Сестра Мартина Лилиан (1886–1986) была деканом математического факультета в университете Лонг-Айленда; брат Аарон Джошуа был известным американским психиатром, работал в Калифорнии. Среди «нехимических» работ М. А. Розанова выделяется большая статья «Эдисон в своей лаборатории» (1932), в которой автор помимо прочего описал разные забавные случаи, в том числе из опыта своего общения с известным изобретателем.

Изображенную структуру назвали D(+)-глицериновым альдегидом. Соответственно все вещества, стереохимически аналогичные этому альдегиду, стали относить к D-ряду. Оптический антипод этого альдегида был назван L-глицериновым альдегидом, а родственные ему вещества стали относить к L-ряду («+» означает, что плоскость поляризации вращается вправо, «–» - влево):

Глицериновый альдегид - одно из простейших оптически активных соединений, легко получается окислением глицерина, а главное - из него можно путем ряда последовательных асимметрических синтезов получить самые различные соединения. Так устанавливается относительная конфигурация правовращающих винной и яблочной кислот и изосерина, левовращающей молочной кислоты и множества других оптически активных соединений. При альдольной конденсации глицеринового альдегида с дигидроксиацетоном получается смесь фруктозы и сорбозы, которые можно разделить. Понятно, что в ходе таких синтезов абсолютная конфигурация у асимметрического атома углерода должна оставаться неизменной. Так и происходит, если не рвется химическая связь этого атома углерода с одним из соседних заместителей. В противном случае может произойти либо потеря оптической активности (как, например, в реакциях нуклеофильного замещения типа S N 1), либо изменение конфигурации на противоположную. Последний процесс, так называемое вальденовское обращение, происходит, например, в реакциях S N 2; он назван по имени Пауля (Павла Ивановича) Вальдена (1863–1957), открывшего его в 1889 году.

Прописные буквы D и L вместо строчных были приняты для того, чтобы не смешивать конфигурацию вещества, установленную относительно глицеринового альдегида, с направлением вращения плоскости поляризации света этим веществом. Так и получилось, что часть соединений D-ряда вращают вправо, часть - влево, и направление вращения никак не связано с принадлежностью вещества к кому-либо из этих рядов. Например, в природе найдена только D(-)-фруктоза (она же левулоза, потому что вращает плоскость поляризации влево). С другой стороны, и L-, и D-аспарагины - правовращающие аминокислоты. У миндальной кислоты С 6 Н 5 СН(ОН)СООН - два оптических изомера: левовращающий D(–)- и правовращающий L(+)-изомер. Таких примеров множество. Следовательно, нельзя заранее установить отношение между знаком вращения соединения и его конфигурацией: два соединения с одной и той же относительной конфигурацией могут иметь противоположные знаки вращения. И наоборот, сходные соединения с одним и тем же знаком вращения могут иметь противоположные относительные конфигурации.

Прямое определение абсолютной конфигурации молекулы - сложная задача, и в течение длительного времени химики обходились лишь отнесением молекул к D- или L-ряду. И только в середине XX века эта задача была решена Дж. Бейвутом с сотрудниками, которые работали в лаборатории имени Вант-Гоффа Утрехтского университета. Эпохальная работа под названием «Определение абсолютной конфигурации оптически активных веществ методом дифракции рентгеновских лучей» была опубликована 18 августа 1951 года в журнале «Nature ». Авторы путем рентгеноструктурного анализа кристаллов калий-рубидиевой соли D(+)-винной кислоты показали, что Фишер не ошибся, постулировав абсолютную конфигурацию энантиомеров глицеринового альдегида! А это значит, что правильны были установлены не только относительные, но и абсолютные конфигурации всех оптически активных соединений! На самом деле у Фишера было ровно по 50% шансов сделать правильный выбор или ошибиться. Сходная история имела место, когда задолго до открытия электрона выбирали направление для протекания электрического тока. И - ошиблись, выбрав направление от плюса к минусу.

Поскольку в основополагающей исходной публикации Бейвута в журнале Nature не были приведены исходные экспериментальные данные, принципиальным оставался вопрос об обоснованности сделанных выводов, тем более что экспериментальная техника тех времен была далеко не совершенной. В частности, не было компьютеров, без которых сейчас не обходится ни одна работа в области рентгеноструктурного анализа. Чтобы снять все возможные подозрения, сотрудники Центра молекулярной биологии Утрехтского университета Мартин Лутц и М. М. Шроерс предприняли недавно проверку результатов своих коллег более чем полувековой давности с использованием самого современного оборудования. Их работа, опубликованная в августе 2008 года в журнале «Acta Crystallographica », section С: «Crystal Structure Communications », называлась «Был ли прав Бейвут? Повторное исследование тетрагидрата тартрата натрия - рубидия». Для получения монокристалла авторы нагрели раствор (+)-винной кислоты до 60°С и начали по каплям добавлять в него раствор эквимолярной смеси карбонатов натрия и рубидия. Сначала в осадок выпал менее растворимый кислый тартрат рубидия. Затем, когда закончилось выделение углекислого газа, осадок полностью перешел в раствор. При его испарении при комнатной температуре образовался бесцветный порошок, перекристаллизация которого из минимального количества воды дала кристаллы Na + ·Rb + ·C 4 H 4 О 6 2– ·4H 2 О, пригодные для исследования. На вопрос, заданный в заголовке статьи, авторы ответили «да».

Работа Бейвута с сотрудниками 1951 года была поистине эпохальной. Впервые появилась возможность избавиться от некоторого несоответствия в обозначениях D и L, которые указывали только на генетическую связь с глицериновыми альдегидами, но никак не на направление оптического вращения. Такая возможность была осуществлена в 1956 году по предложению Роберта Сидни Кана и Кристофера Келка Ингольда и лауреата Нобелевской премии за 1975 год (совместно с Дж. У. Корнфортом) Владимира Прелога. Их первая статья была опубликована в сравнительно малоизвестном швейцарском журнале «Experientia », и тем не менее предложение получило широкое распространение. Так, оно подробно описывается в учебнике органической химии Луиса и Мэри Физеров (1961, русский перевод 1966). Но наибольшую известность эта система получила после публикации в 1966 году детально разработанной универсальной стереохимической номенклатуры (см. Cahn R.S., Ingold С.К., Prelog V. Specification of Molecule Chirality // Angew. Chem., Int. Ed. Engl. , 1966, 5, 385–415; полный текст - PDF, 3,4 Мб).

Авторы предложили ввести понятие хиральности как свойства объекта быть несовместимым со своим отображением в идеальном плоском зеркале и R S -систему (от лат. rectus -прямой, правильный и sinister - левый) для обозначения хиральности.

Подробное описание применения этого правила к оптически активным соединениям можно найти в учебниках органической химии, а так же в учебнике К. П. Бутина . В нем используется определенное расположение групп вокруг хирального центра - по часовой стрелке, в соответствии со «старшинством» этих групп. В частности, по новой номенклатуре правовращающий D-глицериновый альдегид получает обозначение R. Обозначения R и S добавляют к названию соединения в качестве приставок. Так, энантиомерами 1-бром-1-хлорэтана являются R -1-бром-1-хлорэтан и S -1-бром-1-хлорэтан. Их оптически неактивная рацемическая модификация обозначается R,S -1-бром-1-хлорэтан. Однако по традиции широко используются и старые обозначения D и L, например, для cахаров и аминокислот.

В заключение этого раздела отметим еще одно весьма распространенное заблуждение - о том, что все природные аминокислоты относятся якобы исключительно к L-ряду. На самом деле это не так: D-аминокислоты тоже 2 встречаются в природе, хотя и реже, чем аминокислоты L-ряда, в основном - в мире низших организмов. Они присутствуют, например, в пептидных антибиотиках, в оболочке некоторых бактерий. Некоторые термофильные микроорганизмы, живущие в горячих источниках и термальных водах, используют высокие концентрации D-аланина в качестве осморегулятора. Плазма крови высших организмов также содержит D-аминокислоты. В организме человека вырабатывается в качестве нейромедиатора D-серин. В нервных клетках высших организмов находят D-аланин, D-аспарагин и D-серин. С D-аминокислотами работают, например, на кафедре химической энзимологии химического факультета МГУ. А в 2008 году на биологическом факультете МГУ состоялась защита А. В. Дмитриевым диссертации на соискание степени доктора физико-математических наук на тему «Физико-химические механизмы переноса ионов в природных и хирально модифицированных модельных каналах». Автор изучал, в частности, модифицированные модельные белки, включающие D-аминокислоты. Было показано, что для получения первичной структуры белка с природной функциональностью, построенного из D-аминокислот, достаточно десяти D-аминокислот.

Хиральные лекарства

Химики часто относятся к энантиомерам как к одному соединению, поскольку их химические свойства идентичны. Однако их биологическая активность может быть совершенно различной. Это стало очевидным после трагической истории с талидомидом - лекарственным средством, которое широко применялось в 60-е годы XX века в Европе беременными женщинами как эффективное снотворное и успокаивающее. Со временем проявилось его тератогенное действие, и на свет появилось много младенцев с врожденными уродствами. После этого европейцы заимствовали более строгую американскую систему сертификации лекарств - в Америке талидомид не был допущен к продаже. Но лишь в конце 80-х годов выяснилось, что причиной несчастии стал только один из энантиомеров талидомида. О таком различии в действии лекарственных форм раньше не знали, и продаваемый талидомид был рацемической смесью.

В настоящее время многие лекарственные средства выпускаются в виде оптически чистых соединений. Их получают тремя методами: разделением рацемических смесей, модификацией природных оптически активных соединений (к ним относятся углеводы, аминокислоты, терпены, молочная и винная кислоты и др.) и прямым синтезом. Последний также требует хиральных источников, поскольку любые другие традиционные методы синтеза дают рацемат. Это одна из причин высокой стоимости некоторых лекарств, и не удивительно, что из множества синтетических хиральных препаратов, выпускаемых во всем мире, лишь небольшую часть составляют оптически чистые, остальные - рацематы.

Необходимость в оптически чистых энантиомерах объясняется также тем, что часто только один из них обладает требуемым терапевтическим эффектом, тогда как второй антипод может в лучшем случае быть бесполезным, а в худшем вызвать нежелательные побочные эффекты или быть токсичным. Бывает и так, что каждый энантиомер обладает своим специфическим действием. Так, левовращающий S -тироксин (лекарственный препарат левотроид) - это природный гормон щитовидной железы Т4. А правовращающий R -тироксин («декстроид») понижает содержание холестерина в крови. Некоторые производители придумывают для подобных случаев торговые названия-палиндромы, например «Darvon » для наркотического анальгетика и «Novrad » для противокашлевого препарата.

Как уже отмечалось на примере аминокислоты лейцина, человек - существо хиральное. И это относится не только к его внешнему виду. Энантиомерные лекарства, взаимодействуя с хиральными молекулами в организме, например с ферментами, могут действовать по-разному. «Правильное» лекарство подходит к своему рецептору, как ключ к замку, и запускает желаемую биохимическую реакцию. Антиаритмическое средство S -анаприлин действует в сто раз сильнее, чем R -форма. У антигельминтного препарата левамизола активен в основном в S -изомер, тогда как его R- антипод вызывает тошноту, поэтому в свое время рацемический левамизол был заменен одним из энантиомеров. В 60-е годы одним из предшественников адреналина в организме - диоксифенилаланином (L-ДОФА) пытались лечить паркинсонизм. При этом выяснилось, что это вещество, а также родственные ему дофамин и метилдофа эффективны только в виде S -изомера. В то же время R -ДОФА вызывает серьезные побочные эффекты, в том числе заболевание крови. Фирма «Merck » разработала способ производства гипотензивного препарата метилдофа, включающий самопроизвольную кристаллизацию только нужного энантиомера путем введения в раствор небольшой затравки этого изомера.

И последний пример. Пеницилламин (3,3-диметилцистеин) - довольно простое производное аминокислоты цистеина. Это вещество применяют при острых и хронических отравлениях медью, ртутью, свинцом, другими тяжелыми металлами, так как оно дает прочные комплексы с ионами этих металлов, и эти комплексы удаляются почками. Применяют пеницилламин также при различных формах ревматоидного артрита, при системной склеродермии, в ряде других случаев. При этом применяют только S -форму препарата, так как R -изомер токсичен и может привести к слепоте. Недаром на обложке июньского номера американского журнала «Journal of Chemical Education » за 1996 год был помещен вот такой необычный рисунок. Название статьи о лекарственных средствах-антиподах было не менее красноречивым: «Когда молекула смотрится в зеркало».

Илья Абрамович Леенсон,
кандидат химических наук
«Химия и жизнь» №5, 2009

Теперь уже необходимо рассмотреть явление оптической изомерии. Ниже кратко описано это явление, а также приведено несколько примеров оптически активных комплексов металлов. Оптическая изомерия была открыта давно. Классические эксперименты, проведенные в 1848 г. Луи Пастером, одним из самых знаменитых ученых, показали, что натрийаммонийтартрат существует в двух различных формах, отличающихся формой кристаллов. Пастер смог их разделить вручную.

Водные растворы двух изомеров обладают способностью вращать плоскость поляризации света (поляризованный луч - луч света, колебания в котором происходят в одной плоскости) либо вправо, либо влево. Это свойство изомеров называют оптической активностью, а сами соединения - оптическими изомерами; одно из них назвали правым (d - dextro) , а другое - левым (I - levo) изомерами. Степень вращения плоскости поляризации обоими изомерами одинакова, только d-изомер вращает ее слева направо, а l-изомер - справа налево. Следовательно, в растворе, содержащем оба изомера в равной концентрации, вращения плоскости поляризации, вызываемые этими изомерами, компенсируют друг друга. Такую смесь называют рецематом . Так как этот раствор не вращает плоскость поляризации света, он не активен.

Какое же свойство молекулы или иона делает их оптически активными? Теперь можно дать ответ - асимметрия (отсутствие симметрии). Симметрия оптических изомеров аналогична симметрии правой и левой рук, ног, перчаток или ботинок. Имеется и более тонкое различие в строении: относительные положения большого и остальных пальцев на каждой руке одно и то же, и все-таки обе руки различны - одна является зеркальным изображением другой. Аналогичное положение должно иметь место, если молекула или ион оптически активны. Чтобы молекула или ион были оптически активными, нужно, чтобы они не имели плоскости симметрии, т. е. чтобы нельзя было их разделить на две одинаковые половины. При попытке решить, будет ли данная структура оптически активной, можно использовать иной критерий: для этого необходимо сравнить структуру с ее зеркальным изображением. Если структура и ее зеркальное изображение будут различны, то она будет оптически активной. d- и l-Изомеры данного соединения называют энантиоморфными или энантиомерами , что означает "противоположные формы". Вообще же они имеют одинаковые химические и физические свойства. Различие их заключается только в направлении вращения плоскости поляризации света. Это свойство позволило их открыть и различить. Для этой цели используют очень простой прибор - поляриметр.

Интересно отметить, что иногда физиологическое действие энантиомеров очень различно. Так, l-никотин, содержащийся в природном табаке, значительно более токсичен, нежели d-никотин, синтезированный в лаборатории. Их специфическое действие приписывают асимметричному расположению реакционноспособных групп в биологических системах. Так как энантиомеры очень похожи и обе формы вступают в химические реакции всегда в равных количествах, то для их разделения требуется специальная техника. Процесс разделения называется рацемическим расщеплением. Некоторые методы рацемического расщепления описаны в разд. 10 гл. IV. Часто чистый оптический изомер способен превратиться в рацемат; этот процесс назван рацемизацией.

Самым простым примером асимметричной молекулы является тетраэдрическая структура, в которой центральный атом окружен четырьмя разными атомами или группами. Среди органических соединений известно много молекул такого типа. Аминокислоты XIV и XV являются примером строения оптических изомеров. Тетраэдрические комплексы металлов обычно очень реакционноспособны, поэтому их чрезвычайно трудно получить в изомерных формах. Первое сообщение о получении тетраэдрического комплекса металла с четырьмя различными лигандами было сделано в 1963 г., но его рацемическое расщепление пока не осуществлено. Однако комплексы, содержащие два несимметричных бидентатных лиганда, могут быть рацемически расщеплены на оптически активные формы. Оптически активные изомеры этого типа известны для комплексов Ве(II), В(III) и Zn(II). Энантиомеры β-бензоилацетоната бериллия(II) имеют строение XVI и XVII. Надо отметить, что для оптической активности не требуется четырех различных групп вокруг центрального атома; единственным требованием является различие молекулы и ее зеркального изображения.


Плоские квадратные комплексы очень редко оптически активны. В большинстве случаев (например, в комплексах типа ) плоскость молекулы является и плоскостью симметрии.


В противоположность системам с координационным числом четыре шестикоординационные комплексы дают много примеров оптической изомерии; очень часто они встречаются среди соединений или ионов типа [М(АА) 3 ], например оптические изомеры триоксалатного комплекса хрома(III), XVIII и XIX. Бидентатные лиганды обычно содержат атом углерода, но известны по крайней мере три оптически активных, чисто неорганических комплекса. Один из них был приготовлен Вернером для доказательства того, что оптическая активность этих систем обусловлена не атомом углерода. Чтобы это продемонстрировать, он использовал мостиковый комплекс XX, в котором бидентатным лигандом служит дигидроксокомплекс XXI. Возможность рацемического расщепления комплексов типа [М(АА) 3 ] на оптические изомеры явилась прекрасным доказательством их октаэдрической конфигурации. Ни тригональные призмы, ни плоские структуры не показали бы оптической активности (табл. 5).


Другой часто встречающийся тип оптически активных комплексов имеет общую формулу [М(АА) 2 Х 2 ]. В этих системах важно отметить, что транс -изомеры имеют плоскость симметрии и не могут быть оптически активными. Таким образом, если комплекс оптически активен, то ему определенно можно приписать роструктуру. Этот способ доказательства строения используют довольно часто; например, идентификация цис- и транс -изомеров новых комплексов дихлоро-бис -(этилендиамин)родий(III) была проведена этим методом. Один из изомеров + может существовать в неодинаковых формах, одна из которых будет являться зеркальным изображением другой; эти формы были получены (XXV, XXVI) и применены для доказательства цис-цис -структуры комплекса.


Известно много примеров этого типа и для комплексов платины(IV).


Полидентатные лиганды могут также вызывать оптическую изомерию в комплексах металлов. Один из многих таких комплексов - d- и l-Co(EDTA)] - (XXVII и XXVIII).


Ни в одном из приведенных выше примеров оптическая активность не вызвана наличием шести различных лигандов вокруг центрального атома. В комплексе, содержащем шесть различных лигандов, центральный атом координирует их асимметрично; каждый из его пятнадцати пространственных изомеров рацемически расщеплялся бы на оптические изомеры. Таким образом, одна форма имеет оптические изомеры XXIX и XXX.


Однако рацемическое расщепление комплекса этого типа пока не осуществлено.

В заключение следовало бы заметить, что обозначение оптических изомеров d и l имеет смысл, только если известна длина волны использованного света. На рис. 24 ясно показано, что оптический изомер может вращать плоскость поляризации света вправо при одной длине волны и влево при другой. Наличие зеркального изображения для изомера обусловливает и зеркальную кривую. Графически выраженная зависимость оптического вращения от длины волны света называется кривой вращательной дисперсии. Она имеет большее значение и более полезна, чем данные просто об оптическом вращении для одной длины волны. Точную конфигурацию (+) Na - [Со(en) 3 ] 3+ определили, изучая дифракцию им рентгеновских лучей. Затем, применяя ее 8 качестве стандарта, можно было определить точные структуры других комплексов сравнением их кривых вращательной дисперсии.

>
Рис. 24. Кривые вращательной дисперсии и структуры оптических изомеров [Со(en) 3 ] 3+

Поделиться