Поглощение рентгеновских лучей веществом. Спектры поглощения рентгеновских лучей

Рентгеновское излучение (синоним рентгеновские лучи) - это с широким диапазоном длин волн (от 8·10 -6 до 10 -12 см). Рентгеновское излучение возникает при торможении заряженных частиц, чаще всего электронов, в электрическом поле атомов вещества. Образующиеся при этом кванты имеют различную энергию и образуют непрерывный спектр. Максимальная энергия квантов в таком спектре равна энергии налетающих электронов. В (см.) максимальная энергия квантов рентгеновского излучения, выраженная в килоэлектрон-вольтах, численно равна величине приложенного к трубке напряжения, выраженного в киловольтах. При прохождении через вещество рентгеновское излучение взаимодействует с электронами его атомов. Для квантов рентгеновского излучения с энергией до 100 кэв наиболее характерным видом взаимодействия является фотоэффект. В результате такого взаимодействия энергия кванта полностью расходуется на вырывание электрона из атомной оболочки и сообщения ему кинетической энергии. С ростом энергии кванта рентгеновского излучения вероятность фотоэффекта уменьшается и преобладающим становится процесс рассеяния квантов на свободных электронах - так называемый комптон-эффект. В результате такого взаимодействия также образуется вторичный электрон и, кроме того, вылетает квант с энергией меньшей, чем энергия первичного кванта. Если энергия кванта рентгеновского излучения превышает один мегаэлектрон-вольт, может иметь место так называемый эффект образования пар, при котором образуются электрон и позитрон (см. ). Следовательно, при прохождении через вещество происходит уменьшение энергии рентгеновского излучения, т. е. уменьшение его интенсивности. Поскольку при этом с большей вероятностью происходит поглощение квантов низкой энергии, то имеет место обогащение рентгеновского излучения квантами более высокой энергии. Это свойство рентгеновского излучения используют для увеличения средней энергии квантов, т. е. для увеличения его жесткости. Достигается увеличение жесткости рентгеновского излучения использованием специальных фильтров (см. ). Рентгеновское излучение применяют для рентгенодиагностики (см. ) и (см.). См. также Излучения ионизирующие.

Рентгеновское излучение (синоним: рентгеновские лучи, рентгеновы лучи) - квантовое электромагнитное излучение с длиной волны от 250 до 0,025 А (или квантов анергии от 5·10 -2 до 5·10 2 кэв). В 1895 г. открыто В. К. Рентгеном. Смежную с рентгеновским излучением спектральную область электромагнитного излучения, кванты энергии которого превышают 500 кэв, называют гамма-излучением (см.); излучение, кванты энергии которого ниже значений 0,05 кэв, составляет ультрафиолетовое излучение (см.).

Таким образом, представляя относительно небольшую часть обширного спектра электромагнитных излучений, в который входят и радиоволны и видимый свет, рентгеновское излучение, как всякое электромагнитное излучение, распространяется со скоростью света (в пустоте около 300 тыс. км/сек) и характеризуется длиной волны λ (расстояние, на которое излучение распространяется за один период колебания). Рентгеновское излучение обладает также рядом других волновых свойств (преломление, интерференция, дифракция), однако наблюдать их значительно сложнее, чем у более длинноволнового излучения: видимого света, радиоволн.

Спектры рентгеновского излучения: а1 - сплошной тормозной спектр при 310 кв; а - сплошной тормозной спектр при 250 кв, а1 - спектр, фильтрованный 1 мм Cu, а2 - спектр, фильтрованный 2 мм Cu, б - К-серия линии вольфрама.

Для генерирования рентгеновского излучения применяют рентгеновские трубки (см.), в которых излучение возникает при взаимодействии быстрых электронов с атомами вещества анода. Различают рентгеновские излучения двух видов: тормозное и характеристическое. Тормозное рентгеновское излучение, имеющее сплошной спектр, подобно обычному белому свету. Распределение интенсивности в зависимости от длины волны (рис.) представляется кривой с максимумом; в сторону длинных волн кривая спадает полого, а в сторону коротких - круто и обрывается при определенной длине волны (λ0), называемой коротковолновой границей сплошного спектра. Величина λ0 обратно пропорциональна напряжению на трубке. Тормозное излучение возникает при взаимодействии быстрых электронов с ядрами атомов. Интенсивность тормозного излучения прямо пропорциональна силе анодного тока, квадрату напряжения на трубке и атомному номеру (Z) вещества анода.

Если энергия ускоренных в рентгеновской трубке электронов превосходит критическую для вещества анода величину (эта энергия определяется критическим для этого вещества напряжением на трубке Vкр), то возникает характеристическое излучение. Характеристический спектр - линейчатый, его спектральные линии образуют серии, обозначаемые буквами К, L, М, N.

Серия К - самая коротковолновая, серия L - более длинноволновая, серии М и N наблюдаются только у тяжелых элементов (Vкр вольфрама для К-серии - 69,3 кв, для L-серии - 12,1 кв). Характеристическое излучение возникает следующим образом. Быстрые электроны выбивают атомные электроны из внутренних оболочек. Атом возбуждается, а затем возвращается в основное состояние. При этом электроны из внешних, менее связанных оболочек заполняют освободившиеся во внутренних оболочках места, и излучаются фотоны характеристического излучения с энергией, равной разности энергий атома в возбужденном и основном состоянии. Эта разность (а следовательно, и энергия фотона) имеет определенное значение, характерное для каждого элемента. Это явление лежит в основе рентгеноспектрального анализа элементов. На рисунке виден линейчатый спектр вольфрама на фоне сплошного спектра тормозного излучения.

Энергия ускоренных в рентгеновской трубке электронов преобразуется почти целиком в тепловую (анод при этом сильно нагревается), лишь незначительная часть (около 1% при напряжении, близком к 100 кв) превращается в энергию тормозного излучения.

Применение рентгеновского излучения в медицине основано на законах поглощения рентгеновых лучей веществом. Поглощение рентгеновского излучения совершенно не зависит от оптических свойств вещества поглотителя. Бесцветное и прозрачное свинцовое стекло, используемое для защиты персонала рентгеновских кабинетов, практически полностью поглощает рентгеновское излучение. Напротив, лист бумаги, не прозрачный для света, не ослабляет рентгеновского излучения.

Интенсивность однородного (т. е. определенной длины волны) пучка рентгеновского излучения при прохождении через слой поглотителя уменьшается по экспоненциальному закону (е-х), где е - основание натуральных логарифмов (2,718), а показатель экспоненты х равен произведению массового коэффициента ослабления (μ/р) см 2 /г на толщину поглотителя в г/см 2 (здесь р - плотность вещества в г/см 3). Ослабление рентгеновского излучения происходит как за счет рассеяния, так и за счет поглощения. Соответственно массовый коэффициент ослабления является суммой массовых коэффициентов поглощения и рассеяния. Массовый коэффициент поглощения резко возрастает с увеличением атомного номера (Z) поглотителя (пропорционально Z3 или Z5) и с увеличением длины волны (пропорционально λ3). Указанная зависимость от длины волны наблюдается в пределах полос поглощения, на границах которых коэффициент обнаруживает скачки.

Массовый коэффициент рассеяния возрастает с увеличением атомного номера вещества. При λ≥0,ЗÅ коэффициент рассеяния от длины волны не зависит, при λ<0,ЗÅ он уменьшается с уменьшением λ.

Уменьшение коэффициентов поглощения и рассеяния с уменьшением длины волны обусловливает возрастание проникающей способности рентгеновского излучения. Массовый коэффициент поглощения для костей [поглощение в основном обусловлено Са 3 (РO 4) 2 ] почти в 70 раз больше, чем для мягких тканей, где поглощение в основном обусловлено водой. Это объясняет, почему на рентгенограммах так резко выделяется тень костей на фоне мягких тканей.

Распространение неоднородного пучка рентгеновского излучения через любую среду наряду с уменьшением интенсивности сопровождается изменением спектрального состава, изменением качества излучения: длинноволновая часть спектра поглощается в большей степени, чем коротковолновая, излучение становится более однородным. Отфильтровывание длинноволновой части спектра позволяет при рентгенотерапии очагов, глубоко расположенных в теле человека, улучшить соотношение между глубинной и поверхностной дозами (см. Рентгеновские фильтры). Для характеристики качества неоднородного пучка рентгеновых лучей используется понятие «слой половинного ослабления (Л)» - слой вещества, ослабляющий излучение наполовину. Толщина этого слоя зависит от напряжения на трубке, толщины и материала фильтра. Для измерения слоев половинного ослабления используют целлофан (до энергии 12 кэв), алюминий (20-100 кэв), медь (60-300 кэв), свинец и медь (>300 кэв). Для рентгеновых лучей, генерируемых при напряжениях 80-120 кв, 1 мм меди по фильтрующей способности эквивалентен 26 мм алюминия, 1 мм свинца - 50,9 мм алюминия.

Поглощение и рассеяние рентгеновского излучения обусловлено его корпускулярными свойствами; рентгеновское излучение взаимодействует с атомами как поток корпускул (частиц) - фотонов, каждый из которых имеет определенную энергию (обратно пропорциональную длине волны рентгеновского излучения). Интервал энергий рентгеновских фотонов 0,05-500 кэв.

Поглощение рентгеновского излучения обусловлено фотоэлектрическим эффектом: поглощение фотона электронной оболочкой сопровождается вырыванием электрона. Атом возбуждается и, возвращаясь в основное состояние, испускает характеристическое излучение. Вылетающий фотоэлектрон уносит всю энергию фотона (за вычетом энергии связи электрона в атоме).

Рассеяние рентгеновского излучения обусловлено электронами рассеивающей среды. Различают классическое рассеяние (длина волны излучения не меняется, но меняется направление распространения) и рассеяние с изменением длины волны - комптон-эффект (длина волны рассеянного излучения больше, чем падающего). В последнем случае фотон ведет себя как движущийся шарик, а рассеяние фотонов происходит, по образному выражению Комнтона, наподобие игры на бильярде фотонами и электронами: сталкиваясь с электроном, фотон передает ему часть своей энергии и рассеивается, обладая уже меньшей энергией (соответственно длина волны рассеянного излучения увеличивается), электрон вылетает из атома с энергией отдачи (эти электроны называют комптон-электронами, или электронами отдачи). Поглощение энергии рентгеновского излучения происходит при образовании вторичных электронов (комптон - и фотоэлектронов) и передаче им энергии. Энергия рентгеновского излучения, переданная единице массы вещества, определяет поглощенную дозу рентгеновского излучения. Единица этой дозы 1 рад соответствует 100 эрг/г. За счет поглощенной энергии в веществе поглотителя протекает ряд вторичных процессов, имеющих важное значение для дозиметрии рентгеновского излучения, так как именно на них основываются методы измерения рентгеновского излучения. (см. Дозиметрия).

Все газы и многие жидкости, полупроводники и диэлектрики под действием рентгеновского излучения увеличивают электрическую проводимость. Проводимость обнаруживают лучшие изоляционные материалы: парафин, слюда, резина, янтарь. Изменение проводимости обусловлено ионизацией среды, т. е. разделением нейтральных молекул на положительные и отрицательные ионы (ионизацию производят вторичные электроны). Ионизация в воздухе используется для определения экспозиционной дозы рентгеновского излучения (дозы в воздухе), которая измеряется в рентгенах (см. Дозы ионизирующих излучений). При дозе в 1 р поглощенная доза в воздухе равна 0,88 рад.

Под действием рентгеновского излучения в результате возбуждения молекул вещества (и при рекомбинации ионов) возбуждается во многих случаях видимое свечение вещества. При больших интенсивностях рентгеновского излучения наблюдается видимое свечение воздуха, бумаги, парафина и т. п. (исключение составляют металлы). Наибольший выход видимого свечения дают такие кристаллические люминофоры, как Zn·CdS·Ag-фосфор и другие, применяемые для экранов при рентгеноскопии.

Под действием рентгеновского излучения в веществе могут проходить также различные химические процессы: разложение галоидных соединений серебра (фотографический эффект, используемый при рентгенографии), разложение воды и водных растворов перекиси водорода, изменение свойств целлулоида (помутнение и выделение камфоры), парафина (помутнение и отбелка).

В результате полного преобразования вся поглощенная химически инертным веществом энергия рентгеновское излучение превращается в теплоту. Измерение очень малых количеств теплоты требует высокочувствительных методов, зато является основным способом абсолютных измерений рентгеновского излучения.

Вторичные биологические эффекты от воздействия рентгеновского излучения являются основой медицинской рентгенотерапии (см.). Рентгеновские излучения, кванты которых составляют 6-16 кэв (эффективные длины волн от 2 до 5 Å), практически полностью поглощаются кожным покровом ткани человеческого тела; они называются пограничными лучами, или иногда лучами Букки (см. Букки лучи). Для глубокой рентгенотерапии применяется жесткое фильтрованное излучение с эффективными квантами энергии от 100 до 300 кэв.

Биологическое действие рентгеновского излучения должно учитываться не только при рентгенотерапии, но и при рентгенодиагностике, а также во всех других случаях контакта с рентгеновским излучением, требующих применения противолучевой защиты (см.).

Рассмотренные нами соотношения отражают количественную сторону процесса ослабления рентгеновского излучения. Остановимся кратко на качественной стороне процесса, или на тех физических процессах, которые вызывают ослабление. Это, во-первых, поглощение, т.е. превращение энергии рентгеновского излучения в другие виды энергии и, во-вторых, рассеяние, т.е. изменение направления распространения излучения без изменения длины волны (классическое рассеяние Томпсона) и с изменением длины волны (квантовое рассеяние или комптон-эффект).

1. Фотоэлектрическое поглощение . Рентгеновские кванты могут вырывать с электронных оболочек атомов вещества электроны. Их обычно называют фотоэлектронами. Если энергия падающих квантов невелика, то они выбивают электроны с наружных оболочек атома. Фотоэлектронам сообщается большая кинетическая энергия. С увеличением энергии рентгеновские кванты начинают взаимодействовать с электронами, находящимися на более глубоких оболочках атома, у которых энергия связи с ядром больше, чем электронов наружных оболочек. При таком взаимодействии почти вся энергия падающих рентгеновских квантов поглощается, и часть энергии, отдаваемой фотоэлектронам, меньше, чем в первом случае. Кроме появления фотоэлектронов в этом случае испускаются кванты характеристического излучения за счет перехода электронов с вышележащих уровней на уровни, расположенные ближе к ядру.

Таким образом, в результате фотоэлектрического поглощения возникает характеристический спектр данного вещества - вторичное характеристическое излучение. Если вырывание электрона произошло с K-оболочки, то появляется весь линейчатый спектр, характерный для облучаемого вещества.

Рис. 2.5. Спектральное распределение коэффициента поглощения.

Рассмотрим изменение массового коэффициента поглощения t/r, обусловленное фотоэлектрическим поглощением в зависимости от длины волны l падающего рентгеновского излучения(рис.2.5). Изломы кривой называются скачками поглощения, а соответствующая им длина волны - границей поглощения. Каждый скачек соответствует определенному энергетическому уровню атома K, L, M и т.д. При l гр энергия рентгеновского кванта оказывается достаточной для того, чтобы выбить электрон с этого уровня, в результате чего поглощение рентгеновских квантов данной длины волны резко возрастает. Наиболее коротковолновый скачек соответствует удалению электрона с K-уровня, второй с L-уровня, и т.д. Сложная структура L и M-границ обусловлена наличием нескольких подуровней в этих оболочках. Для рентгеновских лучей с длинами волн несколько большими l гр, энергия квантов недостаточна, чтобы вырвать электрон с соответствующей оболочки, вещество относительно прозрачно в этой спектральной области.

Зависимость коэффициента поглощения от l и Z при фотоэффекте определяется как:

t/r = Сl 3 Z 3 , (2.11)

где С - коэффициент пропорциональности, Z - порядковый номер облучаемого элемента, t/r - массовый коэффициент поглощения, l - длина волны падающего рентгеновского излучения.

Эта зависимость описывает участки кривой рис.2.5 между скачками поглощения.

2. Классическое (когерентное) рассеяние объясняет волновая теория рассеяния. Оно имеет место в том случае, если квант рентгеновского излучения взаимодействует с электроном атома, и энергия кванта недостаточна для вырывания электрона с данного уровня. В этом случае, согласно классической теории рассеяния, рентгеновские лучи вызывают вынужденные колебания связанных электронов атомов. Колеблющиеся электроны, как и все колеблющиеся электрические заряды, становятся источником электромагнитных волн, которые распространяются во все стороны.

Интерференция этих сферических волн приводит к возникновению дифракционной картины, закономерно связанной со строением кристалла. Таким образом, именно когерентное рассеяние дает возможность получать картины дифракции, на основании которых можно судить о строении рассеивающего объекта. Классическое рассеяние имеет место при прохождении через среду мягкого рентгеновского излучения с длинами волн более 0,3 Å. Мощность рассеяния одним атомом равна:

p= × × I 0 , (2.12)

а одним граммом вещества

где I 0 - интенсивность падающего рентгеновского пучка, N - число Авогадро, A - атомный вес, Z - порядковый номер вещества.

Отсюда можно найти массовый коэффициент классического рассеяния s кл /r, поскольку он равен P/I 0 или s кл /r = × × Z .

Подставив все значения, получим s к,л /r = 0,402 .

Так как у большинства элементов Z /A@0,5 (кроме водорода), то

s кл /r » 0,2 , (2.14)

т.е. массовый коэффициент классического рассеяния примерно одинаков для всех веществ и не зависит от длины волны падающего рентгеновского излучения.

3. Квантовое (некогерентное) рассеяние . При взаимодействии вещества с жестким рентгеновским излучением (длиной волны менее 0,3 Å) существенную роль начинает играть квантовое рассеяние, когда наблюдается изменение длины волны рассеянного излучения. Это явление нельзя объяснить волновой теорией, но оно объясняется квантовой теорией. Согласно квантовой теории такое взаимодействие можно рассматривать как результат упругого столкновения рентгеновских квантов со свободными электронами (электронами внешних оболочек). Этим электронам рентгеновские кванты отдают часть своей энергии и вызывают переход их на другие энергетические уровни. Электроны, получившие энергию, называются электронами отдачи. Рентгеновские кванты с энергией hn 0 в результате такого столкновения отклоняются от первоначального направления на угол y, и будут иметь энергию hn 1 , меньшую, чем энергия падающего кванта. Уменьшение частоты рассеянного излучения определяется соотношением:

hn 1 = hn 0 - E отд, (2.15)

где E отд - кинетическая энергия электрона отдачи.

Теория и опыт показывают, что изменение частоты или длины волны при квантовом рассеянии не зависит от порядкового номера элемента Z , но зависит от угла рассеянияy. При этом

l y - l 0 = l = ×(1 - cos y) @ 0,024 (1 - cosy) , (2.16)

где l 0 и l y - длина волны рентгеновского кванта до и после рассеяния,

m 0 - масса покоящегося электрона, c - скорость света.

Из формул видно, что по мере увеличения угла рассеяния, l возрастает от 0 (при y = 0°) до 0,048 Å (при y = 180°). Для мягких лучей с длиной волны порядка 1 Å эта величина составляет небольшой процент примерно 4-5 %. Но для жестских лучей (l = 0,05 - 0,01 Å) изменение длины волны на 0,05 Å означает изменение l вдвое и даже в несколько раз.

Ввиду того, что квантовое рассеяние некогерентно (различно l, различен угол распространения отраженного кванта, нет строгой закономерности в распространении рассеянных волн по отношению к кристаллической решетке), порядок в расположении атомов не влияет на характер квантового рассеяния. Эти рассеянные рентгеновские лучи участвуют в создании общего фона на рентгенограмме. Зависимость интенсивности фона от угла рассеяния может быть теоретически вычислена, что практического применения в рентгеноструктурном анализе не имеет, т.к. причин возникновения фона несколько и общее его значение не поддается легкому расчету.

Рассмотренные нами процессы фотоэлектронного поглощения, когерентного и некогерентного рассеяния определяют, в основном ослабление рентгеновских лучей. Кроме них возможны и другие процессы, например, образование электронно-позитронных пар в результате взаимодействия рентгеновских лучей с ядрами атомов. Под воздействием первичных фотоэлектронов с большой кинетической энергией, а также первичной рентгеновской флюоресценции, возможно возникновение вторичного, третичного и т.д. характеристического излучения и соответствующих фотоэлектронов, но уже с меньшими энергиями. Наконец, часть фотоэлектронов (а частично и электронов отдачи) может преодолевать потенциальный барьер у поверхности вещества и вылетать за его пределы, т.е. может иметь место внешний фотоэффект.

Все отмеченные явления, однако, значительно меньше влияют на величину коэффициента ослабления рентгеновских лучей. Для рентгеновских лучей с длинами волн от десятых долей до единиц ангстрем, используемых обычно в структурном анализе, всеми этими побочными явлениями можно пренебречь и считать, что ослабление первичного рентгеновского пучка происходит с одной стороны за счет рассеяния и с другой – в результате процессов поглощения. Тогда коэффициент ослабления можно представить в виде суммы двух коэффициентов.

m/r = s/r + t/r , (2.17)

где s/r - массовый коэффициент рассеяния, учитывающий потери энергии за счет когерентного и некогерентного рассеяния; t/r - массовый коэффициент поглощения, учитывающий главным образом потери энергии за счет фотоэлектрического поглощения и возбуждения характеристических лучей.

Вклад поглощения и рассеяния в ослабление рентгеновского пучка неравнозначен. Для рентгеновских лучей, используемых в структурном анализе, некогерентным рассеянием можно пренебречь. Если учесть при этом, что величина когерентного рассеяния также невелика и примерно постоянна для всех элементов, то можно считать, что

m/r » t/r , (2.18)

т.е. что ослабление рентгеновского пучка определяется в основном поглощением. В связи с этим для массового коэффициента ослабления будут справедливы закономерности, рассмотренные нами выше для массового коэффициента поглощения при фотоэффекте.

Выбор излучения . Характер зависимости коэффициента поглощения (ослабления) от длины волны определяет в известной мере выбор излучения при структурных исследованиях. Сильное поглощение в кристалле значительно уменьшает интенсивность дифракционных пятен на рентгенограмме. Кроме того, возникающая при сильном поглощении флюоресценция засвечивает пленку. Поэтому работать при длинах волн, несколько меньших границы поглощения исследуемого вещества, невыгодно. Это можно легко понять из схемы рис. 2.6.

1. Если излучать будет анод, состоящий из тех же атомов, как и исследуемое вещество, то мы получим, что граница поглощения, например

Рис.2.6. Изменение интенсивности рентгеновского излучения при прохождении через вещество.

K-край поглощения кристалла (рис.2.6, кривая 1), будет несколько сдвинут относительно его характеристического излучения в коротковолновую область спектра. Этот сдвиг - порядка 0,01 - 0,02 Å относительно линий края линейчатого спектра. Он всегда имеет место в спектральном положении излучения и поглощения одного и того же элемента. Поскольку скачок поглощения соответствует энергии, которую надо затратить, чтобы удалить электрон с уровня за пределы атома, самая жесткая линия K-серии соответствует переходу на K-уровень с наиболее далекого уровня атома. Понятно, что энергия E, необходимая для вырывания электрона за пределы атома, всегда несколько больше той, которая освобождается при переходе электрона с наиболее удаленного уровня на тот же K-уровень. Из рис. 2.6 (кривая 1) следует, что, если анод и исследуемый кристалл - одно вещество, то наиболее интенсивное характеристическое излучение, особенно линии K a и K b , лежит в области слабого поглощения кристалла по отношению к границе поглощения. Поэтому поглощение такого излучения кристаллом мало, а флюоресценция слаба.

2. Если мы возьмем анод, атомный номер которого Z на 1 больше исследуемого кристалла, то излучение этого анода, согласно закону Мозли, несколько сместится в коротковолновую область и расположится относительно границы поглощения того же исследуемого вещества так, как это показано на рис. 2.6, кривая 2. Здесь поглощается K b - линия, за счет чего появляется флюоресценция, которая может мешать при съемке.

3. Если разница в атомных номерах составляет 2-3 единицы Z , то спектр излучения такого анода еще дальше сместится в коротковолновую область (рис. 2.6, кривая 3). Этот случай еще более невыгоден, так как, во-первых, рентгеновские излучения сильно ослаблено и, во-вторых, сильная флюоресценция засвечивает пленку при съемке.

Наиболее подходящим, таким образом, является анод, характеристическое излучение которого лежит в области слабого поглощения исследуемым образцом.

Фильтры . Рассмотренный нами эффект селективного поглощения широко используется для ослабления коротковолновой части спектра. Для этого на пути лучей ставится фольга толщиной несколько сотых мм. Фольга изготовлена из вещества, у которого порядковый номер на 1-2 единицы меньше, чем Z анода. В этом случае согласнорис.2.6 (кривая 2) край полосы поглощения фольги лежит между K a - и K b - линиями излучения и K b - линия, а также сплошной спектр, окажутся сильно ослабленными. Ослабление K b по сравнению с K a - излучением порядка 600. Таким образом, мы отфильтровали b-излучение от a-излучения, которое почти не изменяется по интенсивности. Фильтром может служить фольга, изготовленная из материала, порядковый номер которого на 1-2 единицы меньше Z анода. Например, при работе на молибденовом излучении (Z = 42), фильтром могут служить цирконий (Z = 40) и ниобий (Z = 41). В ряду Mn (Z = 25), Fe (Z = 26), Co (Z = 27) каждый из предшествующих элементов может служить фильтром для последующего.

Понятно, что фильтр должен быть расположен вне камеры, в которой производится съемка кристалла, чтобы не было засветки пленки лучами флюоресценции.


Похожая информация.


При прохождении направленного пучка рентгеновских лучей через вещество интенсивность пучка вдоль начального направления ослабляется двумя различными путями :

  • 1. путем исчезновения фотона - так называемое истинное поглощение,
  • 2. путем изменения первоначального направления фотона - рассеяние. Явление рассеяния рентгеновских лучей

совершенно аналогично рассеянию, которое испытывает свет при прохождении через мутную среду. Разница только в том, что “мутность” среды для света обусловлена взвешенными в ней достаточно крупными частицами с показателем преломления, отличным от показателя преломления среды. Для рентгеновских лучей, вследствие их малой длины волны, любая прозрачная для света среда является “мутной”. В этом случае рассеивающими центрами являются сами атомы или молекулы вещества. Аналогичное молекулярное рассеяние наблюдается и для света. Но оно представляет собой в случае света очень слабый эффект. Более подробно вопрос о рассеянии будет рассмотрен в следующей главе.

Рассмотрим ослабление интенсивности / рентгеновского луча, идущего через вещество в направлении оси х. На поверхности вещества положим х = 0, / = / 0 , а интенсивность луча на глубине х - 1 Х. Определим изменение интенсивности dl x рентгеновского луча на пути dx между точками с координатами х и х + dx. Очевидно, что относительное уменьшение интенсивности будет пропорционально dx:

где коэффициент пропорциональности р называется линейным коэффициентом ослабления и зависит от поглощающего вещества и длины волны рентгеновского луча. Из (2.6) следует, что размерность линейного коэффициента ослабления равна см" 1 , а по физическому смыслу линейный коэффициент ослабления представляет собой относительное изменение интенсивности на единице пути. Интегрируя (2.6) по х, получим закон ослабления рентгеновских лучей слоем конечной толщины х:

Однако величина линейного коэффициента ослабления будет зависеть от реальной плотности материала. Например, если мы имеем два образца одной и той же толщины и одного и того же химического состава, но разной плотности, вследствие наличия в одном из них пор, то линейный коэффициент ослабления для пористого объекта будет меньше, чем для непористого. Необходимо было ввести величину, которая определялась бы только элементным составом вещества. Основанием для получения такого коэффициента послужил тот факт, что фотоэлектрическое поглощение рентгеновских лучей в веществе - процесс атомный и расчет величины ослабления интенсивности можно проводить, учитывая не толщину слоя, а количество вещества (его массу), находящегося в облучаемом объеме.

Рассмотрим рентгеновский луч сечением 1 см 2 . Энергия этого луча численно равна интенсивности /. Найдем ослабление такого луча после прохождения единицы массы вещества. Если р - плотность вещества, то на путь dx приходится масса dm = р dx. Относительное изменение интенсивности на пути dx , т.е. при прохождении массы dm , будет пропорционально величине этой массы:

где коэффициент пропорциональности называется

массовым коэффициентом ослабления. Из (2.8) следует, что размерность массового коэффициента ослабления равна см 2 г“ а по физическому смыслу массовый коэффициент ослабления представляет собой относительное изменение интенсивности единицей массы вещества. Обозначим интенсивность луча после прохождения массы т через 1 т и получим закон ослабления рентгеновских лучей слоем конечной массы т:

Характерной особенностью массового коэффициента ослабления является его независимость от физического состояния вещества.

Наряду с линейным и массовым коэффициентами ослабления так же вводится и атомный коэффициент ослабления i a с размерностью см, представляющий собой относительное изменение интенсивности пучка лучей сечением 1 см 2 , приходящееся на один атом.

где А - атомный вес, численно равный массе одного грамма- моля, a N A - число Авогадро, равное числу атомов в грамм- атоме^ = 6.023x10 28 моль" 1).

Акты поглощения и рассеяния рентгеновского излучения можно считать независимыми, и, следовательно, можно положить атомный коэффициент ослабления х а равным сумме атомных коэффициентов истинного поглощения т а и рассеяния а а:

Аналогично можно представить и массовые или линейные коэффициенты ослабления р т (ц) равными сумме массовых или, соответственно, линейных коэффициентов истинного поглощения т ш (т) и рассеяния а т (ст).

Разделив атомный коэффициент истинного поглощения

х а на число электронов в атоме Z, получим электронный коэффициент истинного поглощения (т е)*:

где нижний индекс К указывает на то, что определенный в (2.11) электронный коэффициент истинного поглощения представляет собой среднее значение для всех электронов атома, включая внутренние ЛГ-электроны. Выражение (2.11) справедливо в случае X т.е. в случае, когда могут поглощать все электроны атома.

Атомный коэффициент истинного поглощения можно рассматривать как сумму частичных атомных коэффициентов истинного поглощения x q для отдельных уровней q атома:

где x q определяется фотоэффектом только одного q -уровня атома. Частичный атомный коэффициент истинного поглощения, таким образом, представляет собой площадь эффективного сечения атома для ионизации ^-уровня путем захвата фотона.

Обозначим химическую формулу сложного вещества следующим образом:

где Qi - символы элементов, п { - число атомов в молекуле. Так же введем обозначения - атомный вес и (т ш), - массовый коэффициент истинного поглощения элемента Q h Считая процессы поглощения отдельными атомами молекулы (смеси веществ) независимыми друг от друга и, следовательно, допуская справедливость закона аддитивности для атомных (массовых) коэффициентов истинного поглощения, найдем молекулярный массовый коэффициент поглощения:

где М - молекулярный вес. Эта формула может быть преобразована путем введения весовых концентраций С, = riiAJM элементов Q{.

Полученная формула удобна для расчета массовых коэффициентов поглощения газовых смесей, сплавов, твердых и жидких растворов и т.д.

Справедливость закона аддитивности подтверждается экспериментом. Отступления от этого закона проявляются лишь на тонкой структуре спектров поглощения (более подробно см. ).

Экспериментальные исследования показали, что атомный коэффициент поглощения всеми уровнями атома зависит от атомного номера Z и длины волны X и справедливо приближенное выражение:

где X в см, а коэффициент С зависит от области длин волн и меняется при переходе через значения Х к, X Lh Хщ и т.д., относящиеся к определенным длинам волн, при которых еще происходит ионизация соответствующих уровней.

Величина коэффициентов истинного поглощения зависит от длины волны X падающего излучения и атомного номера элемента. Если для данного элемента построить зависимости х а и х т от X (рис. 2.8), то оказывается, что возрастание х а и х т с увеличением X происходит неравномерно: наблюдается ряд скачков, когда длина волны, увеличиваясь, проходит через некоторые, свои для каждого вещества, значения, являющиеся краями соответствующих полос поглощения, или порогами поглощения для ^-уровня атома (“д-край поглощения”), где мы можем получить два значения х т по обе стороны от этой границы. Обозначим массовый коэффициент поглощения с коротковолновой границы от Х д через x m (X q) 9 а с длинноволновой - x" m (X q), очевидно, что х т (Х я) > x" m (X q). Отношение

называется скачком поглощения ^-уровня. В промежутках между скачками возрастание коэффициентов подчиняется закону X 3 . На рис. 2.9 представлена зависимость х а от Z для Х= 1А.


Рис . 2.8.

Наличие скачков поглощения на зависимостях т т от X и Z приводит к необходимости подбора излучения при проведении структурных исследований материалов, поскольку, если длина волны падающих лучей чуть меньше края полосы поглощения К -серии исследуемого элемента, то не только уменьшается интенсивность дифрагированного излучения из-за сильного поглощения, но и возникает очень интенсивная флуоресценция, которая резко понижает контрастность рентгенограммы, создавая на ней большой фон. Аналогичный, но несколько более слабый эффект наблюдается при исследованиях тяжелых элементов, когда длина волны падающих лучей чуть меньше края полосы поглощения L- серии. Поскольку при исследованиях


Рис. 2.9. Зависимость атомного коэффициента поглощения т а от атомного номера вещества Z для X = 1 А.

С другой стороны, благодаря скачкам поглощения, появляется возможность использования селективно поглощающих экранов (фильтров) для изменения спектрального состава излучения, идущего от трубки. Наиболее широко используется Р-фильтр, позволяющий отделить a-линию характеристического спектра от сопровождающей ее р. Изменение распределения интенсивности в спектре рентгеновского излучения при прохождении его через p-фильтр показано на рис. 2.10.

Рис. 2.10.

Ясно, что край полосы поглощения атомов вещества, из которого состоит Р-фильтр, должен лежать между а- и P-линиями характеристического спектра вещества анода рентгеновской трубки. Это условие выполняется, если атомный номер вещества фильтра на единицу меньше атомного номера вещества анода из Cr, Fe, Со, Ni, Си. Фильтром для излучения Мо могут служить как ниобий, так и цирконий.

При соответствующем подборе толщины фильтра Р- линия окажется ослабленной в несколько сотен раз сильнее, чем а-линия.

1. Преломление и отражение рентгеновских лучей . При переходе из одной среды в другую рентгеновские лучи, подобно световым, испытывают преломление. Однако коэффициент преломления рентгеновских лучей очень мало отличается от 1, что долгое время не давало возможности не только измерить его, но и установить сам факт преломления лучей. В настоящее время установлено, что при 1 Å и переходе из стекла в воздух 1- n = 10 -6 , где n - показатель преломления, а при переходе в воздух из металла n отличается от 1 всего лишь на величину 10 -5 . Тот факт, что n рентгеновских лучей чрезвычайно близок к 1, препятствует созданию рентгеновских микроскопов, аналогичных по принципу действия световым.

Для рентгеновских лучей с их малыми длинами волн поверхность любого тела оказывается шероховатой, поэтому обычное зеркальное отражение для них невозможно. Пронизывая шероховатости, рентгеновские лучи взаимодействуют с атомами вещества, испытывая не отражение, а диффузное рассеяние. При малых углах падения на поверхность преломляющей среды они испытывают полное внутреннее отражение. Угол падения должен при этом составлять менее 0,5.

2. Ослабление рентгеновских лучей при прохождении через вещество. При прохождении рентгеновских лучей через вещество протекают разнообразные и сложные явления взаимодействия их с атомами исследуемого вещества, вследствие чего интенсивность этих лучей уменьшается (рис.2.4).

Рис. 2.4. Ослабление рентгеновского пучка при прохождении через вещество.

Примем, что в равных толщинах одного и того же однородного вещества поглощаются равные доли энергии излучения. Обозначим интенсивность параллельного пучка падающих монохроматических лучей с длиной волны через I 0 , а интенсивность их после прохождения через пластинку толщиной d, через I d . Выделим на некотором расстоянии x от поверхности слой вещества толщиной dx. Интенсивность падающих на него лучей II 0.

Тогда уменьшение интенсивности на бесконечно малом пути dx определится уравнением:

dI= -Idx(2.8)

Здесь - постоянная, характеризующая ослабление лучей с длиной волныв данном веществе на пути в 1 см. Эта постоянная называется линейным коэффициентом ослабления или полным линейным коэффициентом поглощения лучей.

Разделяя переменные и интегрируя уравнение (2.8), получим

= -;ln= - d;

I d =I 0 e -  d . (2.9)

Кроме линейного коэффициента ослабления на практике часто используют массовый коэффициент ослабления, который характеризует, насколько ослабляется поток рентгеновских лучей при прохождении через 1 грамм вещества. Массовый коэффициент ослабления связан с линейным

 m =/. (2.10)

Понятием массового коэффициента ослабления пользуются чаще, чем линейным коэффициентом, т.к. массовый коэффициент ослабления - величина постоянная для данного вещества и не зависит от его агрегатного состояния или плотности (пористости).

2.3. Поглощение и рассеяние рентгеновских лучей

Рассмотренные нами соотношения отражают количественную сторону процесса ослабления рентгеновского излучения. Остановимся кратко на качественной стороне процесса, или на тех физических процессах, которые вызывают ослабление. Это, во-первых, поглощение, т.е. превращение энергии рентгеновского излучения в другие виды энергии и, во-вторых, рассеяние, т.е. изменение направления распространения излучения без изменения длины волны (классическое рассеяние Томпсона) и с изменением длины волны (квантовое рассеяние или комптон-эффект).

1. Фотоэлектрическое поглощение . Рентгеновские кванты могут вырывать с электронных оболочек атомов вещества электроны. Их обычно называют фотоэлектронами. Если энергия падающих квантов невелика, то они выбивают электроны с наружных оболочек атома. Фотоэлектронам сообщается большая кинетическая энергия. С увеличением энергии рентгеновские кванты начинают взаимодействовать с электронами, находящимися на более глубоких оболочках атома, у которых энергия связи с ядром больше, чем электронов наружных оболочек. При таком взаимодействии почти вся энергия падающих рентгеновских квантов поглощается, и часть энергии, отдаваемой фотоэлектронам, меньше, чем в первом случае. Кроме появления фотоэлектронов в этом случае испускаются кванты характеристического излучения за счет перехода электронов с вышележащих уровней на уровни, расположенные ближе к ядру.

Таким образом, в результате фотоэлектрического поглощения возникает характеристический спектр данного вещества - вторичное характеристическое излучение. Если вырывание электрона произошло с K-оболочки, то появляется весь линейчатый спектр, характерный для облучаемого вещества.

Рис. 2.5. Спектральное распределение коэффициента поглощения.

Рассмотрим изменение массового коэффициента поглощения /, обусловленное фотоэлектрическим поглощением в зависимости от длины волныпадающего рентгеновского излучения(рис.2.5). Изломы кривой называются скачками поглощения, а соответствующая им длина волны - границей поглощения. Каждый скачек соответствует определенному энергетическому уровню атома K, L, M и т.д. При гр энергия рентгеновского кванта оказывается достаточной для того, чтобы выбить электрон с этого уровня, в результате чего поглощение рентгеновских квантов данной длины волны резко возрастает. Наиболее коротковолновый скачек соответствует удалению электрона с K-уровня, второй с L-уровня, и т.д. Сложная структура L и M-границ обусловлена наличием нескольких подуровней в этих оболочках. Для рентгеновских лучей с длинами волн несколько большими гр, энергия квантов недостаточна, чтобы вырвать электрон с соответствующей оболочки, вещество относительно прозрачно в этой спектральной области.

Зависимость коэффициента поглощения от иZ при фотоэффекте определяется как:

/= С 3 Z 3 , (2.11)

где С - коэффициент пропорциональности, Z - порядковый номер облучаемого элемента,/- массовый коэффициент поглощения,- длина волны падающего рентгеновского излучения.

Эта зависимость описывает участки кривой рис.2.5 между скачками поглощения.

2. Классическое (когерентное) рассеяние объясняет волновая теория рассеяния. Оно имеет место в том случае, если квант рентгеновского излучения взаимодействует с электроном атома, и энергия кванта недостаточна для вырывания электрона с данного уровня. В этом случае, согласно классической теории рассеяния, рентгеновские лучи вызывают вынужденные колебания связанных электронов атомов. Колеблющиеся электроны, как и все колеблющиеся электрические заряды, становятся источником электромагнитных волн, которые распространяются во все стороны.

Интерференция этих сферических волн приводит к возникновению дифракционной картины, закономерно связанной со строением кристалла. Таким образом, именно когерентное рассеяние дает возможность получать картины дифракции, на основании которых можно судить о строении рассеивающего объекта. Классическое рассеяние имеет место при прохождении через среду мягкого рентгеновского излучения с длинами волн более 0,3 Å. Мощность рассеяния одним атомом равна:

p=Z I 0 , (2.12)

а одним граммом вещества

где I 0 - интенсивность падающего рентгеновского пучка, N - число Авогадро, A - атомный вес,Z - порядковый номер вещества.

Отсюда можно найти массовый коэффициент классического рассеяния  кл /, поскольку он равен P/I 0 или кл /=Z .

Подставив все значения, получим  к,л /= 0,402.

Так как у большинства элементов Z /A0,5 (кроме водорода), то

 кл /0,2 , (2.14)

т.е. массовый коэффициент классического рассеяния примерно одинаков для всех веществ и не зависит от длины волны падающего рентгеновского излучения.

3. Квантовое (некогерентное) рассеяние . При взаимодействии вещества с жестким рентгеновским излучением (длиной волны менее 0,3 Å) существенную роль начинает играть квантовое рассеяние, когда наблюдается изменение длины волны рассеянного излучения. Это явление нельзя объяснить волновой теорией, но оно объясняется квантовой теорией. Согласно квантовой теории такое взаимодействие можно рассматривать как результат упругого столкновения рентгеновских квантов со свободными электронами (электронами внешних оболочек). Этим электронам рентгеновские кванты отдают часть своей энергии и вызывают переход их на другие энергетические уровни. Электроны, получившие энергию, называются электронами отдачи. Рентгеновские кванты с энергией h 0 в результате такого столкновения отклоняются от первоначального направления на угол, и будут иметь энергию h 1 , меньшую, чем энергия падающего кванта. Уменьшение частоты рассеянного излучения определяется соотношением:

h 1 =h 0 -E отд, (2.15)

где E отд - кинетическая энергия электрона отдачи.

Теория и опыт показывают, что изменение частоты или длины волны при квантовом рассеянии не зависит от порядкового номера элемента Z , но зависит от угла рассеяния. При этом

  - 0 = =(1 -cos) 0,024 (1 -cos) , (2.16)

где  0 и  - длина волны рентгеновского кванта до и после рассеяния,

m 0 - масса покоящегося электрона,c - скорость света.

Из формул видно, что по мере увеличения угла рассеяния, возрастает от 0 (при= 0) до 0,048 Å (при= 180). Для мягких лучей с длиной волны порядка 1 Å эта величина составляет небольшой процент примерно 4-5. Но для жестских лучей (= 0,05 - 0,01 Å) изменение длины волны на 0,05 Å означает изменениевдвое и даже в несколько раз.

Ввиду того, что квантовое рассеяние некогерентно (различно , различен угол распространения отраженного кванта, нет строгой закономерности в распространении рассеянных волн по отношению к кристаллической решетке), порядок в расположении атомов не влияет на характер квантового рассеяния. Эти рассеянные рентгеновские лучи участвуют в создании общего фона на рентгенограмме. Зависимость интенсивности фона от угла рассеяния может быть теоретически вычислена, что практического применения в рентгеноструктурном анализе не имеет, т.к. причин возникновения фона несколько и общее его значение не поддается легкому расчету.

Рассмотренные нами процессы фотоэлектронного поглощения, когерентного и некогерентного рассеяния определяют, в основном ослабление рентгеновских лучей. Кроме них возможны и другие процессы, например, образование электронно-позитронных пар в результате взаимодействия рентгеновских лучей с ядрами атомов. Под воздействием первичных фотоэлектронов с большой кинетической энергией, а также первичной рентгеновской флюоресценции, возможно возникновение вторичного, третичного и т.д. характеристического излучения и соответствующих фотоэлектронов, но уже с меньшими энергиями. Наконец, часть фотоэлектронов (а частично и электронов отдачи) может преодолевать потенциальный барьер у поверхности вещества и вылетать за его пределы, т.е. может иметь место внешний фотоэффект.

Все отмеченные явления, однако, значительно меньше влияют на величину коэффициента ослабления рентгеновских лучей. Для рентгеновских лучей с длинами волн от десятых долей до единиц ангстрем, используемых обычно в структурном анализе, всеми этими побочными явлениями можно пренебречь и считать, что ослабление первичного рентгеновского пучка происходит с одной стороны за счет рассеяния и с другой – в результате процессов поглощения. Тогда коэффициент ослабления можно представить в виде суммы двух коэффициентов.

/=/+/, (2.17)

где /- массовый коэффициент рассеяния, учитывающий потери энергии за счет когерентного и некогерентного рассеяния;/- массовый коэффициент поглощения, учитывающий главным образом потери энергии за счет фотоэлектрического поглощения и возбуждения характеристических лучей.

Вклад поглощения и рассеяния в ослабление рентгеновского пучка неравнозначен. Для рентгеновских лучей, используемых в структурном анализе, некогерентным рассеянием можно пренебречь. Если учесть при этом, что величина когерентного рассеяния также невелика и примерно постоянна для всех элементов, то можно считать, что

//, (2.18)

т.е. что ослабление рентгеновского пучка определяется в основном поглощением. В связи с этим для массового коэффициента ослабления будут справедливы закономерности, рассмотренные нами выше для массового коэффициента поглощения при фотоэффекте.

Выбор излучения . Характер зависимости коэффициента поглощения (ослабления) от длины волны определяет в известной мере выбор излучения при структурных исследованиях. Сильное поглощение в кристалле значительно уменьшает интенсивность дифракционных пятен на рентгенограмме. Кроме того, возникающая при сильном поглощении флюоресценция засвечивает пленку. Поэтому работать при длинах волн, несколько меньших границы поглощения исследуемого вещества, невыгодно. Это можно легко понять из схемы рис. 2.6.

1. Если излучать будет анод, состоящий из тех же атомов, как и исследуемое вещество, то мы получим, что граница поглощения, например

Рис.2.6. Изменение интенсивности рентгеновского излучения при прохождении через вещество.

K-край поглощения кристалла (рис.2.6, кривая 1), будет несколько сдвинут относительно его характеристического излучения в коротковолновую область спектра. Этот сдвиг - порядка 0,01 - 0,02 Å относительно линий края линейчатого спектра. Он всегда имеет место в спектральном положении излучения и поглощения одного и того же элемента. Поскольку скачок поглощения соответствует энергии, которую надо затратить, чтобы удалить электрон с уровня за пределы атома, самая жесткая линия K-серии соответствует переходу на K-уровень с наиболее далекого уровня атома. Понятно, что энергия E, необходимая для вырывания электрона за пределы атома, всегда несколько больше той, которая освобождается при переходе электрона с наиболее удаленного уровня на тот же K-уровень. Из рис. 2.6 (кривая 1) следует, что, если анод и исследуемый кристалл - одно вещество, то наиболее интенсивное характеристическое излучение, особенно линии K  и K  , лежит в области слабого поглощения кристалла по отношению к границе поглощения. Поэтому поглощение такого излучения кристаллом мало, а флюоресценция слаба.

2. Если мы возьмем анод, атомный номер которого Z на 1 больше исследуемого кристалла, то излучение этого анода, согласно закону Мозли, несколько сместится в коротковолновую область и расположится относительно границы поглощения того же исследуемого вещества так, как это показано на рис. 2.6, кривая 2. Здесь поглощается K  - линия, за счет чего появляется флюоресценция, которая может мешать при съемке.

3. Если разница в атомных номерах составляет 2-3 единицы Z , то спектр излучения такого анода еще дальше сместится в коротковолновую область (рис. 2.6, кривая 3). Этот случай еще более невыгоден, так как, во-первых, рентгеновские излучения сильно ослаблено и, во-вторых, сильная флюоресценция засвечивает пленку при съемке.

Наиболее подходящим, таким образом, является анод, характеристическое излучение которого лежит в области слабого поглощения исследуемым образцом.

Фильтры . Рассмотренный нами эффект селективного поглощения широко используется для ослабления коротковолновой части спектра. Для этого на пути лучей ставится фольга толщиной несколько сотыхмм. Фольга изготовлена из вещества, у которого порядковый номер на 1-2 единицы меньше, чемZ анода. В этом случае согласнорис.2.6 (кривая 2) край полосы поглощения фольги лежит между K  - и K  - линиями излучения и K  - линия, а также сплошной спектр, окажутся сильно ослабленными. Ослабление K  по сравнению с K  - излучением порядка 600. Таким образом, мы отфильтровали-излучение от-излучения, которое почти не изменяется по интенсивности. Фильтром может служить фольга, изготовленная из материала, порядковый номер которого на 1-2 единицы меньшеZ анода. Например, при работе на молибденовом излучении (Z = 42), фильтром могут служить цирконий (Z = 40) и ниобий (Z = 41). В ряду Mn (Z = 25), Fe (Z = 26), Co (Z = 27) каждый из предшествующих элементов может служить фильтром для последующего.

Понятно, что фильтр должен быть расположен вне камеры, в которой производится съемка кристалла, чтобы не было засветки пленки лучами флюоресценции.

Поделиться