Радиоактивность - это что за явление? Виды радиоактивности. Понятие радиоактивности

Радиация существовала задолго до появления человека и сопровождает человека от рождения до смерти. Ни один из наших органов чувств не способен распознавать коротковолновое излучение. Для выявления его человеку пришлось изобрести специальные приборы, без которых никак нельзя судить ни об уровне радиации, ни об опасности, которую она в себе несет.

История изучения радиоактивности

Все живое на нашей планете возникло, развивалось и существует в условиях, иногда далеких от благоприятных. На живые организмы действуют перепады температур, атмосферные осадки, движение воздуха, изменения атмосферного давления, чередование дня и ночи и другие факторы. Среди них особое место занимает ионизирующая радиация, образующаяся за счет 25 природных радиоактивных элементов, таких как уран, радий, радон, торий и др. Естественная радиоактивность - это частицы, летящие сквозь атмосферу от Солнца и звезд Галактики. Это два источника ионизирующего облучения всего живого и неживого.

Рентгеновское, или γ-излучение, представляет собой электромагнитные волны с высокой частотой и чрезвычайно большой энергией. Все виды ионизирующего излучения обусловливают ионизацию и изменение облучаемых объектов. Считается, что все живое на Земле приспособилось к действию ионизирующих излучений и не реагирует на них. Существует даже гипотеза, что естественная радиоактивность - это двигатель эволюции, благодаря которому возникло такое большое количество видов, самых разнообразных по форме и способам жизни организмов, поскольку мутации есть не что иное, как возникновение новых признаков организма, которые могут привести к появлению совершенно нового вида.

В течение XVIII-XIX столетий, а особенно сейчас, естественный радиационный фон на Земле повысился и продолжает увеличиваться. Причиной стала прогрессирующая индустриализация всех развитых стран, в результате которой при увеличении добычи металлических руд, угля, нефти, строительных материалов, удобрений и других полезных ископаемых на ее поверхность в больших количествах поступают различные минералы, содержащие природные радиоактивные элементы. При сжигании минеральных источников энергии, особенно таких, как уголь, торф, горючие сланцы, в атмосферу попадает много различных веществ, в том числе и радиоактивных. В середине XX века была открыта искусственная радиоактивность. Это привело к созданию атомной бомбы в США, а затем и в других странах, а также к развитию атомной энергетики. Во время атомных взрывов, работы АЭС (особенно при авариях), в окружающей среде, кроме постоянного естественного фона, накапливается искусственная радиоактивность. Это приводит к появлению очагов и больших территорий с высоким уровнем радиоактивности.

Что такое радиоактивность, кто открыл это явление?

Радиоактивность была открыта в 1896 году физиком из Франции А. Беккерелем. Он определил, что главным источником радиационного облучения является гамма-излучение вследствие его большой проникающей способности. Радиоактивность - это излучение, которому постоянно подвергается человек в результате воздействия природных источников радиации (космические и солнечные лучи, земное излучение). Его называют естественным радиационным фоном. Он существовал всегда: с момента образования нашей планеты и до настоящего времени. Человек, как и любой другой организм, постоянно находится под действием естественного радиационного фона. По данным Научного Комитета ООН по действию атомной радиации (НКДАР), радиоактивное облучение человека, вызванное действием природных источников радиоактивности, составляет около 83 % всей радиации, полученной человеком. Остальные 17 % вызываются техногенными источниками радиоактивности. Открытие и практическое применение ядерной энергии вызвало много проблем. С каждым годом расширяется сфера контактов человечества и всего живого с ионизирующим излучением. Уже сегодня из-за загрязнения почвы и атмосферы радиоактивными продуктами атомной энергетики и экспериментальных ядерных взрывов, большого распространения лучевого лечения и медицинской диагностики, применения новых стройматериалов радиационное давление увеличилось более чем в два раза.

Виды радиоактивности

На получение человеком предельных доз действует искусственная и естественная радиоактивность. Это процесс, который активизирует изучение биологического воздействия радиации все более широким кругом лиц. Каждый человек должен знать, какая есть связь между мощностью экспозиционной дозы излучения (МЭД) и эквивалентной дозой облучения, которая является определяющей для оценки ущерба, причиненного человеку радиацией.

β-частицы имеют энергию примерно от 0,01 до 2,3 МэВ, движутся со скоростью света. На своем пути создают в среднем 50 пар ионов на 1 см пути и не так быстро тратят свою энергию, как α-частицы. Чтобы задержать β- облучение, требуется металл толщиной не менее 3 мм.

Естественная радиоактивность вещества - это когда α-частицы выпускаются ядрами и имеют энергию от 4 до 9 МэВ. Выброшеные из ядер с большой начальной скоростью (до 20000 км/с), α-частицы тратят энергию на ионизацию атомов вещества, которые встречаются на их пути (в среднем 50 000 пар ионов на 1 см пути), и останавливаются.

γ-излучение принадлежит к электромагнитному излучению с длиной волны меньше 0,01 нм, энергия γ-кванта изменяется примерно от 0,02 до 2,6 МэВ. Фотоны γ-излучения поглощаются в одном или в нескольких актах взаимодействия с атомами вещества. Вторичные электроны ионизируют атомы окружающей среды. Частично гамма-излучение задерживается лишь толстой свинцовой (толщиной более 200 мм) или бетонной плитой.

Явление радиоактивности - это излучения, сопровождающиеся освобождением разного количества энергии и обладающие различной проникающей способностью, поэтому они оказывают различное влияние на организмы и экосистемы в целом. В дозиметрии пользуются величинами, которые количественно характеризуют радиоактивное свойство вещества и вызванные действием радиации эффекты: активность, экспозиционная доза излучения, поглощенная доза излучения, эквивалентная доза облучения. Открытие радиоактивности и возможность искусственного превращения ядер способствовали разработке методов и техники измерения радиоактивности элементов.

Лучевая болезнь

Радиоактивность - это излучение, которое является причиной лучевой болезни. Различают хроническую и острую формы этой болезни. Хроническая лучевая болезнь начинается в результате долгого облучения организма малыми (от 1 мЗв до 5 мЗв в сутки) дозами радиации после накопления суммарной дозы 0,7 ... 1,0 Сб. Острая лучевая болезнь вызывается однократным интенсивным облучением от 1-2 Зв дозе более 6 Сб. Выполненные расчеты эквивалентной дозы облучения показывают, что дозы, которые получает человек в обычных условиях в городе, к счастью, значительно ниже, чем те, что вызывают лучевую болезнь.

Мощность эквивалентной дозы, вызванной естественным излучением, - от 0,44 до 1,75 мЗв в год. Во время медицинской диагностики (рентгеновские исследования, лучевая терапия и т.д.) человек получает примерно 1,4 мЗв в год. Добавим, что в строительных материалах (кирпиче, бетоне) в небольших дозах также присутствуют радиоактивные элементы. Поэтому доза облучения возрастает еще на 1,5 мЗв в течение года.

Для фактологической оценки вредности радиоактивного излучения используют такую характеристику, как риск. Под риском обычно понимают вероятность нанесения вреда здоровью или жизни человека в течение определенного отрезка времени (как правило, в течение одного календарного года), рассчитывая его по формуле относительной частоты наступления опасного случайного события в совокупности всех возможных событий. Основным проявлением ущерба, причиненного радиоактивным излучением, является заболевание человека раком.

Группы радиотоксичности

Радиотоксичность - свойство радиоактивных изотопов вызвать патологические изменения при поступлении их в организм. Радиотоксичность изотопов зависит от ряда их характеристик и факторов, главными из которых являются следующие:

1) время поступления в организм радиоактивных веществ;

3) схема радиоактивного распада в организме;
4) средняя энергия одного акта распада;
5) распределение радиоактивных веществ по системам и органам;
6) пути поступления в организм радиоактивных веществ;
7) время пребывания в организме радионуклида;

Все радионуклиды как потенциальные источники внутреннего облучения распределяются на четыре группы радиотоксичности:

  • группа А - с особо высокой радиотоксичностью, min активность 1 кБк;
  • группа Б - с высокой радиотоксичностью, min активность не более 10 кБк;
  • группа В - со средней радиотоксичностью, min активность не более 100 кБк;
  • группа Г - с малой радиотоксичностью, min активность не более 1000 кБк.

Принципы нормирования радиактивного воздействия

В результате экспериментов на животных и изучения последствий облучения людей при ядерных взрывах, авариях на предприятиях ядерно-топливного цикла, лучевой терапии злокачественных опухолей, а также исследований других видов радиоактивности были установлены реакции организма на острое и хроническое облучение.

Нестохастические, или детерминистические эффекты имеют зависимость от дозы и проявляются в облученном организме за относительно короткий срок. С увеличением дозы облучения возрастает степень поражения органов и тканей - наблюдается эффект градуировки.

Стохастические, или вероятные (случайные) эффекты относятся к удаленным последствий облучения организма. В основе возникновения стохастических эффектов лежат вызванные облучением мутации и другие нарушения в клеточных структурах. Они возникают как в соматических (от латинского somatos -тело), так и в половых клетках и приводят к образованию в облученном организме злокачественных опухолей, а у потомства - аномалий развития и других нарушений, которые передаются по наследству (генетические эффекты). Принято считать, что порога мутагенного действия радиации не существует, а значит, нет и вполне безопасных доз. При дополнительном действии ионизирующего излучения как одного из многих факторов мутагенеза в дозе 1 сЗв (1 бэр) риск возникновения злокачественных опухолей возрастает на 5 %, а проявление генетических дефектов - на 0,4 %.

Риск гибели людей от дополнительного воздействия ионизирующего облучения в таких малых дозах значительно меньше риска их гибели в самом безопасном производстве. Но он есть, потому дозовые нагрузки на организм человека строго регламентированы. Эту функцию выполняют нормы радиационной безопасности.

НРБУ-97 направлены на недопущение возникновения детерминированных (соматических) эффектов и ограничение на принятом уровне возникновения стохастических эффектов. Радиационно-гигиенические регламенты, установленные НРБУ-97, построены на следующих трех принципах защиты:

Принцип оправданности;
. принцип непревышения;
. принцип оптимизации.

Естественная радиоактивность: уровни, дозы, риски

Система радиационной защиты граждан, построенная на результатах медико-биологических исследований, кратко формулируется так: степень возможного негативного влияния облучения на здоровье человека определяет только величина дозы, независимо от того, каким источником ионизирующего излучения она сформирована - естественным или искусственным. Техногенно усиленные источники природного происхождения относятся к управляемым компонентам суммарной дозы, и их вклад можно уменьшить, приняв соответствующие меры. Например, для радона в воздухе помещений и основных доз, которые формируют источники, оговорено две ситуации облучения: облучение в уже эксплуатируемых строениях и новых домах, которые только сдаются в эксплуатацию.

Нормативы требуют, чтобы эквивалентная равновесная активность радона в воздухе (ЭРОА) для домов эксплуатируемых не превышала 100 Бк/м3, что соответствует величине 250 Бк/м3 в сроке объемной активности, который применяется в большинстве европейских стран. Для сравнения, в новых "Основных стандартах безопасности" (BSS) МАГАТЭ референтный уровень для радона определен в 300 Бк/м3.

Для новых домов, детских учреждений и больниц эта величина равна 50 Бк/м3 (или 125 Бк/м3 газа радона). Измерение радиоактивности радона, по НРБУ-97, как и по нормативным документам других стран мира, проводится только интегральными методами. Это требование очень важно, потому что уровень радона в воздухе одной квартиры или дома может изменяться в 100 раз в течение суток.

Радон - 222

В ходе исследований, которые проводились в России в последние годы, были проанализированы структура и величина существующих доз облучения и установлено, что для населения в помещениях главное опасное вещество, которое создает радиоактивность, - это радон. Содержание этого вещества в воздухе можно легко снизить, если увеличить вентилирование помещения или ограничить поступление газа герметизацией подвального пространства. По данным отдела радиационной гигиены, порядка 23 % жилого фонда не соответствуют требованиям действующей нормативной базы по содержанию радона в воздухе помещений. Если жилой фонд довести до действующих нормативов, убытки можно уменьшить вдвое.

Расмотрим, почему же так вреден радон? Радиоактивность - это распад естественных радионуклидов уранового ряда, при котором радон-222 преобразуется в газ. При этом он образует коротко существующие дочерние продукты (ДПР): полоний, висмут, свинец, которые, присоединяясь к частицам пыли или влаги, образуют радиоактивный аэрозоль. Попадая в легкие, эта смесь через небольшой период полураспада ДПР радона-222 приводит к относительно высоким дозам облучения, которые могут быть причиной дополнительного риска заболеваний раком легких.

По данным обследования жилищного фонда отдельных регионов (28000 домов) специалистами института гигиены и медицинской экологии, средневзвешенная по отдельным областям среднегодовая эффективная доза облучения населения от радона составляет 2,4 мЗв/год, для сельского населения эта величина выше почти вдвое и составляет 4,1 мЗв/год. Для отдельных регионов дозы радона варьируются в достаточно широких пределах - от 1,2 мЗв/год до 4,3 мЗв/год, а индивидуальные дозы населения могут превышать дозовые лимиты для профессионалов категории А (20 мЗв/год).

Если оценить по принятым в мировой практике методам смертность от рака легких, обусловленного облучением радоном-222, то она составляет порядка 6000 случаев в год. Необходимо также учитывать, что в последние годы получены знания о влиянии радона. Так, по данным некоторых эпидемиологических исследований установлено, что радон может вызывать лейкемию у детей. По данным AS Evrard, связь между радоном и лейкемией у детей имеет прирост 20 % на каждые 100 Бк/м3. По данным Raaschou-Nielsen, этот прирост больше 34 % на каждые 100 Бк/м3.

Радиоактивность и шлаки

Во всех странах очень остро стоит проблема переработки и захоронения металлических отходов, имеющих радиоактивность. Это тоже источник излучения - не только от аварий, как например, на Чернобыльской АЭС, но и от действующих атомных электростанций, где постоянно проводятся плановые замены агрегатов. Как при этом быть со старыми металлическими узлами и конструкциями, которые имеют высокую радиоактивность? Специалисты из института электросварки разработали плазменно-дуговой способ плавки в водоохлаждаемом тигле, который обеспечивает удаление в шлаки металла или сплава, которые имеют радиоактивность. Это физика самой безопасной очистки. При этом можно использовать различные шлаковые композиции с высокой ассимилирующей способностью. Этим способом можно удалить даже те радиоактивные элементы, которые находятся в трещинах и углублениях поверхности. Для разрезания металлических отходов предусмотрено применять плазменную резку и взрыв под водой, электрогидравлическую резку и уплотнение разрезаемых узлов и конструкций. Эти высокопроизводительные технологии исключают образование пыли при работе, следовательно, предотвращают загрязнение окружающей среды. Стоимость переработки радиоактивных отходов по отечественному проекту ниже, чем у иностранных разработчиков.

Основные принципы защиты от закрытых источников ионизирующих излучений

Закрытые источники ионизирующих излучений обусловливают лишь внешнее облучение организма. Принципы защиты можно вывести из таких основных закономерностей распределения излучений и характера их взаимодействия с веществом:

Доза внешнего облучения пропорциональна времени и интенсивности воздействия излучения;
. интенсивность излучения от источника прямо пропорциональна количеству частиц или квантов или частиц;
. проходя через вещество, излучения им поглощаются, и их пробег зависит от плотности этого вещества.

Основные принципы защиты от внешнего облучения базируются на:

а) защите временем;
б) защите количеством;
в) защите экранами (экранирование источников материалами);
г) защите расстоянием (увеличение расстояния до максимально возможных величин).

В комплексе защитных мероприятий следует учитывать и вид излучения радиоактивных веществ (α-, β-частицы, γ-кванты). Защита от внешнего излучения α-частицами не нужна, поскольку пробег их в воздухе составляет 2,4-11 см, а в воде и тканях живого организма - только 100 мк. Спецодежда полностью защищает от них.

При внешнем облучении β-частицы влияют на кожный покров и роговицу глаз и в больших дозах вызывают сухость и ожоги кожи, ломкость ногтей, катаракту. Для защиты от β-частиц используют резиновые перчатки, очки и экраны. В случае особо мощных потоков β-частиц следует применять дополнительные экраны, предназначенные для защиты от тормозного рентгеновского излучения: фартуки и перчатки из просвинцованной резины, просвинцованное стекло, ширмы, боксы и тому подобное.

Защита от внешнего γ-излучения может обеспечиваться сокращением времени непосредственной работы с источниками, применением защитных экранов, поглощающих излучение, увеличением расстояния от источника.

Вышеупомянутые способы защиты можно применять отдельно или в различных комбинациях, но так, чтобы дозы внешнего фотонного облучения лиц категории А не превышали 7 мР в день и 0,04 Р в неделю. Защита путем уменьшения времени непосредственной работы с источниками фотонного излучения достигается скоростью манипуляций с препаратом, сокращением продолжительности рабочего дня и рабочей недели.

конспект урока

по физике

по теме «Радиоактивность. Виды радиоактивных излучений»

Тема урока: « Радиоактивность. Виды радиоактивных излучений».

Тип урока: изучение нового материала

Цели урока: формирование представления о явлении радиоактивности, о физической природе и свойствах α-, β-, γ-излучений; углубление знаний учащихся о структуре атома.

Задачи урока:

- обучающие

познакомить учащихся с историей открытия явления радиоактивности и физической природой этого явления, объяснить правило смещения и научить применять его с помощью периодической системы химических элементов;

-развивающие

расширить представления учащихся о физической картине мира, развитие навыков работы с таблицами, способствовать развитию любознательности, формирование умения анализировать, делать выводы, сравнивать, обобщать факты, применять ранее полученные знания для объяснения наблюдаемых явлений;

-воспитательные

развивать интерес к предмету, расширить кругозор учащихся, воспитывать стремление к овладению знаниями.

Оборудование:

интерактивная доска, компьютер, видеопроектор, презентация PowerPoint «Радиоактивность. Виды радиоактивных излучений» , компьютерная модель таблицы Менделеева (приложение MENDEL . exe ), периодическая таблица Менделеева Д.И.(в распечатанном виде на столах у учащихся)

Ход урока.

Организационный момент

Приветствие, проверка присутствующих. Объяснение хода урока.

    Мотивация и актуализация знаний

Слова радиоактивности, радиоактивного излучения, радиоактивные элементы знают сегодня все. Все знают об опасности радиоактивных излучений. Но многие, наверное, знают и то, что радиоактивные излучения служат человеку: они позволяют в ряде случаев поставить правильный диагноз болезни, лечат опасные заболевания, повышают урожайность культурных растений. Создаётся проблемная ситуация

Что такое радиоактивность? Какова его физическая природа? В чём заключается его опасность? Сегодня на уроке мы это узнаем (Слайд №2)

Для того чтобы стало понятно, что такое радиоактивность нужно вспомнить некоторые вопросы, которые мы уже изучили ранее на уроках физики.

Что происходит с заряженной частицей, влетевшей в магнитное поле? (на неё действует сила Лоренца, формула силы Лоренца)

Как определить направление силы Лоренца? (по правилу левой руки) (Слайд №3)

Каково строение атомного ядра? (ядра всех химических элементов состоят из нуклонов: протонов и нейтронов)

Чему равно число протонов в ядре? (порядковый номер в таблице Менделеева)

Как условно обозначаются ядра химических элементов?

Z – зарядовое число, которое показывает число протонов в ядре (порядковый номер в таблице Менделеева)

А - массовое число, которое показывает число нуклонов в ядре A = N + Z , где N – число нейтронов в ядре (Слайд №4)

    Изучение нового материала

1) История открытия радиоактивности

Изучая соли урана, французский учёный Анри Беккерель сделал вывод, что соли урана самопроизвольно, без влияния внешних факторов создают какое-то излучение.

26-27 февраля 1896 года Беккерель приготовил несколько образцов кристаллов и прикрепил их к завернутым в бумагу фотопластинкам. Однако в эти дни стояла пасмурная погода, и Беккерель решил отложить опыт. Он считал, что ему необходим яркий солнечный свет. Пластинки были спрятаны в ящик стола и пролежали там около трех дней. Лишь 1 марта, Беккерель решил их проявить, ожидая в лучшем случае, увидеть слабые изображения. Но все оказалось наоборот: изображения были очень четкими. Таким образом, какое-то излучение испускалось солями урана безо всякого освещения светом. (Слайды №5,6)

Беккерель продолжил исследования солей урана, однако он не понимал природы этого излучения. Однажды, демонстрируя своему гостю излучение урановых образцов, он задал ему вопрос в виде просьбы:«Ведь вы физик и химик одновременно. Проверьте, нет ли в этих излучающих телах примесей, которые могли бы играть особенную роль».И этот вопрос стал научной программой исследований молодой четы: Пьера Кюри (1859 – 1906) и его жены Марии Склодовской-Кюри (1867 – 1934). Двумя годами позднее, супруги Пьер и Мария Кюри, доказали, что аналогичным свойством обладает химический элемент торий Th-232 . Затем они же открыли новые, ранее неизвестные элементы – полоний Po-209 и радий Ra-226. Радий – редкий элемент; чтобы получить 1 грамм чистого радия, надо переработать не менее 5 тонн урановой руды; его радиоактивность в несколько миллионов раз выше радиоактивности урана. Впоследствии было установлено, что все химические элементы с порядковым номером более 83 являются радиоактивными. Супруги Кюри, явление самопроизвольного излучения назвали радиоактивностью. (Слайд №7)

2) Физическая природа радиоактивности и виды радиоактивных излучений.

По ходу изучения нового материала учащиеся самостоятельно заполняют таблицу (слайд № 8) :

Альфа-излучение – это поток положительно заряженных α-частиц (ядер гелия ), летящих со скоростью 14000-2000 км/с (Слайд № 16)

Бета-излучение – это поток электронов, летящих со скоростью близкой к скорости света (0,999с) (Слайд № 17)

Гамма-излучение - электромагнитное излучение с длиной волны менее 10 -10 м, имеющее ярко выраженные корпускулярные свойства, то есть являющееся потоком γ-квантов (Слайд № 18)

Проверка заполнения таблицы свойств радиоактивных излучений (Слайд №19)

3) Радиоактивные превращения

В чём же заключается физическая сущность явления радиоактивности?

Для ответа на этот вопрос необходимо исследовать само радиоактивное вещество.

Что же происходит с радиоактивным веществом?
Уже самые первые опыты, проделанные Резерфордом совместно с английским ученым Ф. Содди, убедили их, что при радиоактивном распаде происходит превращение одних химических элементов в другие.
Цепочки превращений испытали радиоактивные элементы: актиний, торий, уран. Общий вывод, к которому пришли ученые, сформировал Резерфорд:

радиоактивность -
Радиоактивные превращения ядер бывают различных типов: α -распад, β -распад , эти превращения под чиняются правилу смещения , сформулированному впервые английским ученым Ф. Содди. (Слайд № 20) α – распад: Ядро теряет положительный заряд 2ē и масса его убывает на 4 а.е.м. Элемент смещается на 2 клетки к началу периодической системы.

A Z Х α A-4 Z-2 Y + 4 2 He ( Слайд № 21)

β – распад: из ядра вылетает электрон, заряд увеличивается на единицу, а масса остается почти неизменной. Элемент смещается на 1 клетку к концу периодической системы.

A Z Х β A Z+1 Y + 0 -1e

Проблемная ситуация. Вопрос к классу: Если вы внимательно следите за моими рассуждениями, то должны мне задать вопрос. (Как же из ядра вылетают электроны, если их там нет ?!!!)

Ответ: приβ – распаде нейтрон превращается в протон с испусканием электрона
1 0 n → 1 1 p + 0 -1 e + υ (υ - антинейтрино) (Слайд № 22)

γ – излучение не сопровождается изменением заряда, масса же ядра меняется ничтожно мало, так как излучаемые фотоны не имеют заряда и их масса ничтожно мала (Слайд № 23)

Демонстрация видеофайла с компьютерной модельюальфа-распада и бета-распада(видеофайл запускается кнопкой “ Play ” в окне видеофайла) (Слайд № 24)

IV . Закрепление изученного.

Выполнение двух упражнений на применение правила смещения с использованием компьютерной модели периодической таблицыМенделеева(файл MENDEL . exe ) (Слайд № 25)

Самостоятельное решение задач с использованием таблицы Менделеева (Слайд № 26). Для проверки правильности решения отдельные учащиеся решают задачи у доски.

Задача 1: Изотоп тория 230 90 Th испускает α-частицу. Какой элемент при этом образуется?
Решение: 230 90 Th α 226 98 Ra + 4 2 He
Задача 2: Изотоп тория 230 90 Th испускает β-радиоактивен. Какой элемент при этом образуется?
Решение: 230 90 Th β → 230 91 Рa + 0-1e
Задача 3: Протактиний 231 91 Рa α –радиоактивен. С помощью правил «сдвига» и таблицы элементов Менделеева определите, какой элемент получается с помощью этого распада.
Решение: 231 91 Рa α 227 89 Ас + 4 2 Не
Задача 4: В какой элемент превращения уран 239 92 U после двух β – распадов и одного α – распада?
Решение: 239 92 U β → 239 93 Np β → 239 94 Pu α 235 92 U
Задача 5: Написать цепочку ядерных превращений неона: β, β, β, α, α, β, α, α
Решение: 20 10 Ne β → 20 11 Na β → 20 12 Mg β → 20 13 Al α 16 11 Na α 12 9 F β → 12 10 Ne α 8 8 O α 4 6 C

    Домашнее задание: п.98-100, упр.14(1) (Слайд № 27).

    Подведение итогов урока (Слайд № 28).

Итоги:

    В природе существуют радиоактивные химические элементы, которые излучают три вида излучения:

    Альфа-излучение – это поток положительно заряженных α-частиц (ядер гелия), летящих со скоростью 14000-2000 км/с

    Бета-излучение – это поток электронов, летящих со скоростью близкой к скорости света (0,999с)

    Гамма-излучение - электромагнитное излучение с длиной волны менее 10 -10 м, имеющее ярко выраженные корпускулярные свойства, то есть являющееся потоком γ-квантов.

    При радиоактивном излучении происходят превращения ядер химических элементов (альфа- и бета-распад).

    Радиоактивность - самопроизвольное превращение ядер одних химических элементов в ядра других химических элементов, сопровождаемое испусканием различных частиц или ядер.

Ответы на вопросы учащихся.

Выставление оценок.

ИСПОЛЬЗОВАВШАЯСЯ ЛИТЕРАТУРА И ИНТЕРНЕТ-РЕСУРСЫ

    Физика. 11 класс. Учебник для общеобразовательных учреждений с приложением на электронном носителе. Базовый и профильный уровни. (Классический курс) г. Москва,Издательство: «Просвещение», 2012

    Сборник задач по физике для средней школы

    Сайт «Класс!ная физика» /class-fizika.narod.ru/ входит в каталог , одобрено Министеством образования и науки РФ, Москва, выпуск с 2006г.

    Сайт «Единая коллекция цифровых образовательных ресурсов»

К основным типам радиоактивности относятся альфа-,бета- и гамма-распады..

Альфа-распад. В этом случае происходит самопроизвольное испускание ядром α-частицы (ядра нуклида 4 Не), и это проис­ходит по схеме

где X - символ материнского ядра, Y - дочернего.

Установлено, что α-частицы испускают только тяжелые ядра. Кинетическая энергия, с которой α-частицы вылетают из рас­падающегося ядра, порядка нескольких МэВ. В воздухе при нормальном давлении пробег α-частиц составляет несколько сантиметров (их энергия расходуется на образование ионов на своем пути).

Альфа-частица возникает только в момент радиоактивного распада ядра. Покидая ядро, ей прихо­дится преодолевать потенциальный барь-­
ер, высота которого превосходит ее энер­гию (см.рис.).

Внутренняя сторона барь­ера обусловлена ядерными силами, внешняя же - силами кулоновского от­талкивания α-частицы и дочернегоядра.
Преодоление α-частицей потенциаль­
ного барьера в данных условиях происходит благодаря туннельному эффекту

Квантовая теория, учитывая вол­новые свойства α-частицы, «позволяет» ей с определенной веро­ятностью проникать сквозь такой барьер. Соответствующий расчет хорошо подтверждается результатами измерений.

Бета-распад. Так называют самопроизвольный процесс, в котором исходное ядро превращается в другое ядро с тем же массовым числом А , но с зарядовым числом Z , отличающимся от исходного на ±1. Это связано с тем, что β -распад сопровождается испусканием электрона (позитрона) или его захватом из оболочки атома. Различают три разновидности β -распада:

1)электронный - распад, в котором ядро испускает электрон и его зарядовое число Z становится Z + 1;

2)позитронный - распад, в котором ядро испускает позитрон и его зарядовое число Z становится Z - 1;

3)К -захват , в котором ядро захватывает один из электронов электронной оболочки атома (обычно из К -оболочки) и его зарядовое число Z становится равным Z -1. На освободив­шееся место в К -оболоч-ке переходит электрон с другой обо­лочки, и поэтому К -захват всегда сопровождается характе­-
ристическим рентгеновским излучением.

«Проблему -распада» ре­шил Паули (1930), предположивший, что вместе с электроном испускается электрически нейтральная частица, неуловимая вследствие очень большой проникающей способности. Ее назва­ли нейтрино .

Важное обстоятельство в пользу гипотезы о существовании нейтрино - это необходимость сохранения момента импульса в реакции распада. Дело в том, что отличи­тельной чертой (-распада является превращение в ядре ней­трона в протон, и наоборот. Поэтому можно сказать, что -распад есть не внутриядерный процесс, а внутринуклонный про­цесс. В связи с этим указанные выше три разновидности -распада обусловлены следующими превращениями нукло­нов в ядре:


Сейчас установлено, что спин ней­трино равен 1/2.

Наблюдать нейтрино непосредственно очень сложно. Это обу­словлено тем, что их электрический заряд равен нулю, масса (если она есть) чрезвычайно мала, фантастически мало и эф­фективное сечение взаимодействия их с ядрами. Согласно тео­ретическим оценкам средняя длина свободного пробега нейтри­но с энергией 1 МэВ в воде порядка 10 16 км (или 100 световых лет!). Это значительно превышает размеры звезд. Такие ней­трино свободно пронизывают Солнце, а тем более Землю.

Чтобы зарегистрировать процесс захвата нейтрино, необхо­димо иметь огромные плотности потока их. Это стало возмож­ным только после создания ядерных реакторов, которые и были использованы как мощные источники нейтрино.

Непосредственное экспериментальное доказательство суще­ствования нейтрино было получено в 1956 г.

Гамма-распад . Этот вид распада заключается в испускании возбужденным ядром при переходе его в нормальное состояние γ-квантов, энергия которых варьируется в пределах от 10 кэВ до 5 МэВ. Существенно, что спектр испускаемых γ-квантов диск­ретный, так как дискретны энергетические уровни самих ядер.

В отличие от β -распада, γ -распад - процесс внутриядерный, а не внутринуклонный.

Возбужденные ядра образуются при β -распаде в случае, если распад материн­ского ядра X в основное состояние дочерне­го ядра Y запрещен. Тогда дочернее ядро Y оказывается в одном из возбужденных состояний, переход из которого в основное состояние и сопровождается испусканием у-квантов (см.рис.).

Возбужденное ядро может перейти в основное состояние и другим путем, путем непосредственной передачи энергии воз­буждения одному из атомных электронов, например, в К -оболочке. Этот процесс, конкурирующий с β -распадом, называют внутренней конверсией электронов.Внутренняя конверсия сопровождается рентгеновским излучением.

Ядерные реакции

Ядерная реакция - это процесс сильного взаимодействия атомного ядра с элементарной частицей или с другим ядром, - процесс, сопровождающийся преобразованием ядер. Это взаи­модействие возникает благодаря действию ядерных сил при сближении частиц до расстояний порядка 10 -13 см.

Отметим, что именно ядерные реакции дают наиболее широ­кую информацию о свойствах ядер. Поэтому изучение ядерных реакций является самой главной задачей ядерной физики.

Наиболее распространенным типом ядерной реакции явля­ется взаимодействие частицы а с ядром X, в результате чего об­разуется частица b и ядроY. Это записывают символически так:

Роль частиц а и b чаще всего выполняют нейтрон п , протон р , дейтрон d , α -частица и γ -квант..

Частицы, рождающиеся в результате ядерной реакции, могут быть не только b и Y , но вместе с ними и другие b", Y" . В этом случае говорят, что ядерная реакция имеет несколько ка­налов, причем различным каналам соответствуют различные вероятности.

Типы ядерных реакций. Установлено, что реакции, вызыва­емые не очень быстрыми частицами, протекают в два этапа. Первый этап - это захват налетающей частицы а ядром X с об­разованием составного (или промежуточного) ядра. При этом энергия частицы а быстро перераспределяется между всеми нуклонами ядра, и составное ядро оказывается в возбужденном состоянии. В этом состоянии ядро пребывает до тех пор, пока в результате внутренних флуктуации на одной из частиц (кото­рая может состоять и из нескольких нуклонов) не сконцентри­руется энергия, достаточная для вылета ее из ядра.

Такой механизм протекания ядерной реакции был предло­жен Н. Бором (1936) и впоследствии подтвержден эксперимен­тально. Эти реакции иногда записывают с указанием составно­го ядра С , как например

где звездочка у С указывает на то, что ядро С* возникает в воз­бужденном состоянии.

Составное ядро С* существует достаточно долго - по сравне­нию с «ядерным временем», т. е. временем пролета нуклона с энергией порядка 1 МэВ (v 10 9 см/с) расстояния, равного диа­метру ядра. Ядерное время я 10 -21 с. Время же жизни состав­ного ядра в возбужденном состоянии ~ 10 -14 с. Т. е. в ядерном масштабе составное ядро живет действительно очень долго. За это время все следы истории его образования исчезают. Поэто­му распад составного ядра - вторая стадия реакции - проте­кает независимо от способа образования составного ядра.

Реакции, вызываемые быстрыми частицами с энергией, пре­вышающей десятки МэВ, протекают без образования составно­го ядра. И ядерная реакция, как правило, является прямой. В этом случае налетающая частица непосредственно передает свою энергию какой-то частице внутри ядра, например, одному нук­лону, дейтрону, α -частице и т. д., в результате чего эта частица вылетает из ядра.

Типичная реакция прямого взаимодействия - это реакция срыва, когда налетающей частицей является, например, дей­трон. При попадании одного из нуклонов дейтрона в область действия ядерных сил он будет захвачен ядром, в то время как другой нуклон дейтрона окажется вне зоны действия ядерных сил и пролетит мимо ядра. Символически реакцию срыва запи­сывают как (d, n ) или (d, p ).

При бомбардировке ядер сильно взаимодействующими час­тицами с очень высокой энергией (от нескольких сотен МэВ ивыше) ядра могут «взрываться», распадаясь на множество мел­ких осколков. При регистрации такие взрывы оставляют след в виде многолучевых звезд.

Энергия реакции . Принято говорить, что ядерные реакции могут происходить как с выделением, так и с поглощением энергии.

Реакции с выделением энергии называют экзоэнергетическими, реакции с поглощением энергии - эндоэнергетическими.

У электрона есть античастица - позитрон, который был обнаружен в составе космического излучения. Существо­вание позитронов также было доказано наблюдением их треков в камере Вильсона, помещенной в магнитном поле. Позитрон - частица с массой, равной массе электрона, и спином 1/2 (в единицах ), несущая положительный заряд +е.

Согласно Бору, ядерные реакции протекают в две стадии по схеме:

Первая стадия - захват ядром частицы а и образование промежуточного ядра С , называемого составным, или компаунд-ядром. Вторая стадия - распад составного ядра на ядро Y и частицу b .

Фредерик и Ирен Жолио-Кюри бомбардировали α -частицами В, А1 и Mg, что привело к искусственно радиоактивным ядрам, претерпеваю-щим -распад (позитронный распад или + р- распад):

В ядерных реакциях выполняется правило смещения

Процесс р + - распада протекает так, как если бы один из протонов ядра превратился в нейт­рон, испустив при этом позитрон и нейтрино:

Позитроны могут рождаться при взаимодействии γ -квантов большой энергии (E γ > 1,02 МэВ = 2m e с 2 ) с веществом. Этот процесс протекает по схеме

Электронно-позитронные пары были обнаружены в камере Вильсона, поме­щенной в магнитное поле, в которой и отклонялись в противопо­ложные стороны. Процесс превращения электронно-позитронной пары (при столкновении позитрона с электроном) в два γ - кванта, называется аннигиляция. При аннигиляции энергия пары переходит в энергию фотонов

Появление в этом процессе двух γ -квантов следует из законов сохранения импульса и энергии.

Захват ядром электрона с одной из внутренних оболочек атома (К, L и т. д.) с испусканием нейтрино (электронный захват или е-захват) происходит по следующей схеме:

(появление нейтрино вытекает из закона сохранения спина). В общем виде схема е -захвата:

В зависимости от скорости (энергии) нейтроны делят на медленные и быстрые.

Медленные нейтроны: ультрахолодные (≤ 10 -7 эВ),

очень холодные(10 -7 ÷10 -4 эВ),холодные(10 -4 ÷10 -3 эВ),

тепловые (10 -3 ÷0,5 эВ), резонансные (0,5÷10 4 эВ) Электронный захват обнаруживается по сопровождающему его харак­теристическому рентгеновскому излучению, возникающему при заполнении образовавшихся вакансий в электронной оболочке атома. Вся энергия распада уносится нейтрино.

Замедлить нейтроны можно пропуская их через вещество, содержащее водород (например, воду). Они испытывают при этом рассеяние и замедляются.

Нестабильность атомов была открыта в конце 19-го века. Спустя 46 лет был построен первый ядерный реактор.

Радиоактивностью называется способность нестабильных ядер превращаться в другие ядра при этом процесс превращения сопровождается испусканием различных частиц.

Открытие радиоактивности – явления, доказывающего сложный состав ядра, произошло благодаря счастливой случайности. Рентгеновские лучи впервые были получены при столкновении быстрых электронов со стеклянной стенкой разрядной трубки. Одновременно наблюдалось свечение стенок трубки. Беккерель завернул фотопластинку в плотную черную бумагу, положил соли и выставил на яркий свет. После проявления пластинка почернела на тех участках, где лежала соль. Следовательно, уран создавал какое-то излучение, которое, подобно рентгеновскому пронизывает непрозрачные тела и действует на пластинку. Беккерель думал, что излучение возникает под влиянием солнечных лучей. Но однажды, в феврале 1884 года, провести очередной опыт не удавалось из-за облачной погоды. Беккерель убрал пластинку в ящик стола, положив на нее сверху медный крест, покрытый солью урана. Проявив на всякий случай пластинку два дня спустя, он обнаружил на ней почернение в форме отчетливой тени креста. Это означало, что соли урана самопроизвольно, без каких-либо внешних влияний создают какое-то излучение.

В 1898 году Мария Склодовская-Кюри во Франции и другие учёные обнаружили излучение тория. В дальнейшем главные усилия в поисках новых элементов были предприняты Марией Склодовской-Кюри и её мужем Пьером Кюри . Был открыт ещё один элемент, дающий очень интенсивное излучение. Он был назван радием. Само же явление самопроизвольного излучения было названо супругами Кюри радиоактивностью.

Впоследствии было установлено, что все химические элементы с порядковым номером более 83 являются радиоактивными.

После открытия радиоактивности элементов началось исследование физической природы их излучения. Кроме Беккереля и супругов Кюри этим занялся Резерфорд.

Классический опыт, позволивший обнаружить сложный состав радиоактивного излучения, состоял в следующем. Препарат радия помещали на дно узкого канала в куске свинца. Против канала находилась фотопластинка. На выходившие из канала излучения действовало сильное магнитное поле, линии индукции которого перпендикулярны лучу. Вся установка размещалась в вакууме.

В отсутствии магнитного поля на фотопластинке после проявления обнаруживалось одно тёмное пятно, точно напротив канала. В магнитном поле пучок распадался на три пучка. Две составляющие первичного потока отклонялись в противоположные стороны. Это указывало на наличие у этих излучений электрических зарядов противоположных знаков. При этом отрицательный компонент излучения отклонялся магнитным полем гораздо больше чем положительный. Третья составляющая не отклонялась магнитным полем. Положительно заряженный компонент получил название альфа-лучей, отрицательно заряженный – бета-лучей и нейтральный – гамма-лучей.

Эти три вида излучения очень сильно отличаются друг от друга по проникающей способности, т.е. по тому, насколько интенсивно они поглощаются различными веществами.

Альфа-излучение - это поток тяжелых положительно заряженных частиц. Возникает в результате распада атомов тяжелых элементов, таких как уран, радий и торий. В воздухе альфа-излучение проходит не более пяти сантиметров и, как правило, полностью задерживается листом бумаги или внешним омертвевшим слоем кожи. Однако если вещество, испускающее альфа-частицы, попадает внутрь организма с пищей или воздухом, оно облучает внутренние органы и становится опасным.

Бета-излучение - это электроны, которые значительно меньше альфа-частиц и могут проникать вглубь тела на несколько сантиметров. От него можно защититься тонким листом металла, оконным стеклом и даже обычной одеждой. Попадая на незащищенные участки тела, бета-излучение оказывает воздействие, как правило, на верхние слои кожи. Во время аварии на Чернобыльской АЭС в 1986 году пожарные получили ожоги кожи в результате очень сильного облучения бета-частицами. Если вещество, испускающее бета-частицы, попадет в организм, оно будет облучать внутренние ткани.

Гамма-излучение - это фотоны, т.е. электромагнитная волна, несущая энергию. В воздухе оно может проходить большие расстояния, постепенно теряя энергию в результате столкновений с атомами среды. Интенсивное гамма-излучение, если от него не защититься, может повредить не только кожу, но и внутренние ткани. Плотные и тяжелые материалы, такие как железо и свинец, являются отличными барьерами на пути гамма-излучения.

Вопрос

Радиоактивность - это способность атомов некоторых изотопов самопроизвольно распадаться, испуская излучение. Впервые такое излучение, испускаемое ураном, обнаружил Беккерель, поэтому вначале радиоактивные излучения называли лучами Беккереля. Основной вид радиоактивного распада - выбрасывание из ядра атома альфа-частицы - альфа-распад (см. Альфа-излучение) или бета-частицы - бета-распад (см. Бета-излучение).

При радиоактивном распаде исходный превращается в атом другого элемента. В результате выбрасывания из ядра атома альфа-частицы, представляющей собой совокупность двух протонов и двух нейтронов, массовое число образующегося атома (см.) уменьшается на четыре единицы, и он оказывается сдвинутым в таблице Д. И. Менделеева на две клетки влево, так как порядковый номер элемента в таблице равен числу протонов в ядре атома. При выбрасывании бета-частицы (электрон) происходит превращение в ядре одного нейтрона в протон, вследствие чего образующийся атом оказывается сдвинутым в таблице Д. И. Менделеева на одну клетку вправо. Масса его при этом почти не изменяется. Выбрасывание бета-частицы сопряжено обычно с (см.).

Распад любого радиоактивного изотопа происходит по следующему закону: число распадающихся в единицу времени атомов (n) пропорционально числу атомов (N), имеющихся в наличии в данный момент времени, т. е. n=λN; коэффициент λ, называется постоянной радиоактивного распада и связан с периодом полураспада изотопа (Т) соотношением λ= 0,693/T. Указанный закон распада приводит к тому, что за каждый отрезок времени, равный периоду полураспада Т, количество изотопа уменьшается вдвое. Если образующиеся в результате радиоактивного распада атомы оказываются тоже радиоактивными, то происходит их постепенное накопление, пока не установится радиоактивное равновесие между материнским и дочерним изотопами; при этом число атомов дочернего изотопа, образующихся в единицу времени, равно числу атомов, распадающихся за то же время.

Известно свыше 40 естественных радиоактивных изотопов. Большая часть их расположена в трех радиоактивных рядах (семействах): урана-радия, и актиния. Все указанные радиоактивные изотопы широко распространены в природе. Присутствие их в горных породах, водах, атмосфере, растительных и живых организмах обусловливает естественную или природную радиоактивность.

Кроме естественных радиоактивных изотопов, сейчас известно около тысячи искусственно радиоактивных. Получают их путем ядерных реакций, в основном в ядерных реакторах (см. ). Многие естественные и искусственно радиоактивные изотопы широко используются в медицине для лечения (см. Лучевая терапия) и особенно для диагностики заболеваний (см. ). См. также Излучения ионизирующие.

Радиоактивность (от лат. radius - луч и activus - действенный) - способность неустойчивых ядер атомов самопроизвольно превращаться в другие, более устойчивые или стабильные ядра. Такие превращения ядер называются радиоактивными, а сами ядра или соответствующие атомы - радиоактивными ядрами (атомами). При радиоактивных превращениях ядра испускают энергию либо в виде заряженных частиц, либо в виде гамма-квантов электромагнитного излучения или гамма-излучения.

Превращения, при которых ядро одного химического элемента превращается в ядро другого элемента с другим значением атомного номера, называют радиоактивным распадом. Радиоактивные изотопы (см.), образовавшиеся и существующие в природных условиях, называют естественно радиоактивными; такие же изотопы, полученные искусственным путем посредством ядерных реакций,- искусственно радиоактивными. Между естественно и искусственно радиоактивными изотопами нет принципиальной разницы, так как свойства ядер атомов и самих атомов определяются только составом и структурой ядра и не зависят от способа их образования.

Радиоактивность была открыта в 1896 г. Беккерелем (А. Н. Becquerel), который обнаружил излучение урана (см.), способное вызывать почернение фотоэмульсии и ионизировать воздух. Кюри-Склодовская (М. Curie-Sklodowska) первая измерила интенсивность излучения урана и одновременно с немецким ученым Шмидтом (G. С. Schmidt) обнаружила радиоактивность у тория (см.). Свойство изотопов самопроизвольно испускать невидимое излучение супруги Кюри назвали радиоактивностью. В июле 1898 г. они сообщили об открытии ими в урановой смоляной руде нового радиоактивного элемента полония (см.). В декабре 1898 г. совместно с Бемоном (G. Bemont) они открыли радий (см.).

После открытия радиоактивных элементов ряд авторов (Беккерель, супруги Кюри, Резерфорд и др.) установил, что эти элементы могут испускать три вида лучей, которые по-разному ведут себя в магнитном поле. По предложению Резерфорда (Е. Rutherford, 1902) эти лучи были названы альфа- (см. Альфа-излучение), бета- (см. Бета-излучение) и гамма-лучами (см. Гамма-излучение). Альфа-лучи состоят из положительно заряженных альфа-частиц (дважды ионизированных атомов гелия Не4); бета-лучи- из отрицательно заряженных частиц малой массы - электронов; гамма-лучи по природе аналогичны рентгеновым лучам и представляют собой кванты электромагнитного излучения.

В 1902 г. Резерфорд и Содди (F. Soddy) объяснили явление радиоактивности самопроизвольным превращением атомов одного элемента в атомы другого элемента, происходящим по законам случайности и сопровождающимся выделением энергии в виде альфа-, бета-и гамма-лучей.

В 1910 г. М. Кюри-Склодовская вместе с Дебьерном (A. Debierne) получила чистый металлический радий и исследовала его радиоактивные свойства, в частности измерила постоянную распада радия. Вскоре был открыт ряд других радиоактивных элементов. Дебьерн и Гизель (F. Giesel) открыли актиний. Ган (О. Halm) открыл радиоторий и мезоторий, Болтвуд (В. В. Boltwood) открыл ионий, Ган и Майтнер (L. Meitner) открыли протактиний. Все изотопы этих элементов радиоактивны. В 1903 г. Пьер Кюри и Лаборд (С. A. Laborde) показали, что препарат радия имеет всегда повышенную температуру и что 1 г радия с продуктами его распада за 1 час выделяет около 140 ккал. В этом же году Рамзай (W. Ramsay) и Содди установили, что в запаянной ампуле с радием содержится газообразный гелий. Работами Резерфорда, Дорна (F. Dorn), Дебьерна и Гизеля было показано, что среди продуктов распада урана и тория имеются быстрораспадающиеся радиоактивные газы, названные эманациями радия, тория и актиния (радон, торон, актинон). Таким образом, было доказано, что при распаде атомы радия превращаются в атомы гелия и радона. Законы радиоактивных превращений одних элементов в другие при альфа- и бета-распадах (законы смещения) были впервые сформулированы Содди, Фаянсом (К. Fajans) и Расселлом (W. J. Russell).

Эти законы заключаются в следующем. При альфа-распаде всегда из исходного элемента получается другой, который расположен в периодической системе Д. И. Менделеева на две клетки левее исходного элемента (порядковый или атомный номер на 2 меньше исходного); при бета-распаде всегда из исходного элемента получается другой элемент, который расположен в периодической системе на одну клетку правее исходного элемента (атомный номер на единицу больше, чем у исходного элемента).

Изучение превращений радиоактивных элементов привело к открытию изотопов, т. е. атомов, которые обладают одинаковыми химическими свойствами и атомными номерами, но отличаются друг от друга по массе и по физическим свойствам, в частности по радиоактивным свойствам (типу излучения, скорости распада). Из большого количества открытых радиоактивных веществ новыми элементами оказались только радий (Ra), радон (Rn), полоний (Ро) и протактиний (Ра), а остальные - изотопами ранее известных урана (U), тория (Th), свинца (Pb), таллия (Tl) и висмута (Bi).

После открытия Резерфордом ядерной структуры атомов и доказательства, что именно ядро определяет все свойства атома, в частности структуру его электронных оболочек и его химические свойства (см. Атом, Ядро атомное), стало ясно, что радиоактивные превращения связаны с превращением атомных ядер. Дальнейшее изучение строения атомных ядер позволило полностью расшифровать механизм радиоактивных превращений.

Первое искусственное превращение ядер - ядерная реакция (см.) - было осуществлено Резерфордом в 1919 г. путем бомбардировки ядер атомов азота альфа-частицами полония. При этом ядра азота испускали протоны (см.) и превращались в ядра кислорода О17. В 1934 г. Ф. Жолио-Кюри и И. Жолио-Кюри (F. Joliot-Curie, I. Joliot-Curie) впервые получили искусственным путем радиоактивный изотоп фосфора бомбардируя альфа-частицами атомы Al. Ядра P30 в отличие от ядер естественно радиоактивных изотопов, при распаде испускали не электроны, а позитроны (см. Космическое излучение) и превращались в стабильные ядра кремния Si30. Таким образом, в 1934 г. были одновременно открыты искусственная радиоактивность и новый вид радиоактивного распада - позитронный распад, или β + -распад.

Супруги Жолио-Кюри высказали мысль о том, что все быстрые частицы (протоны, дейтоны, нейтроны) вызывают ядерные реакции и могут быть использованы для получения естественно радиоактивных изотопов. Ферми (Е. Fermi) с сотр., бомбардируя нейтронами различные элементы, получил радиоактивные изотопы почти всех химических элементов. В настоящее время при помощи ускоренных заряженных частиц (см. Ускорители заряженных частиц) и нейтронов осуществлено большое разнообразие ядерных реакций, в результате которых стало возможным получать любые радиоактивные изотопы.

В 1937 г. Альварес (L. Alvarez) открыл новый вид радиоактивного превращения - электронный захват. При электронном захвате ядро атома захватывает электрон с оболочки атома и превращается в ядро другого элемента. В 1939 г. Ган и Штрассманн (F. Strassmann) открыли деление ядра урана на более легкие ядра (осколки деления) при бомбардировке его нейтронами. В том же году Флеров и Петржак показали, что процесс деления ядер урана осуществляется и без внешнего воздействия, самопроизвольно. Тем самым они открыли новый вид радиоактивного превращения - самопроизвольное деление тяжелых ядер.

В настоящее время известны следующие виды радиоактивных превращений, совершающихся без внешних воздействий, самопроизвольно, в силу только внутренних причин, обусловленных структурой атомных ядер.

1. Альфа-распад . Ядро с атомным номером Z и массовым числом А испускает альфа-частицу - ядро гелия Не4- и превращается в другое ядро с Z меньшим на 2 единицы и А меньшим на 4 единицы, чем у исходного ядра. В общем виде альфа-распад записывается следующим образом:

Где X - исходное ядро, Y-ядро продукта распада.

2. Бета-распад бывает двух типов: электронный и позитронный, или β - - и β + -распад (см. Бета-излучение). При электронном распаде из ядра вылетают электрон и нейтрино и образуется новое ядро с тем же массовым числом А, но с атомным номером Z на единицу большим, нем у исходного ядра:

При позитронном распаде ядро испускает позитрон и нейтрино и образуется новое ядро с тем же массовым числом, но с Z на единицу меньшим, чем у исходного ядра:

При бета-распаде в среднем 2/3 энергии ядра уносится частицами нейтрино (нейтральными частицами очень малой массы, очень слабо взаимодействующими с веществом).

3. Электронный захват (прежнее название К-захват). Ядро захватывает электрон с одной из оболочек атома, чаще всего с К-оболочки, испускает нейтрино и превращается в новое ядро с тем же массовым числом А, но с атомным номером Z меньше на 1, чем у исходного ядра.

Превращение ядер при электронном захвате и позитронном распаде одинаковое, поэтому эти два вида распада наблюдаются одновременно для одних и тех же ядер, т. е. являются конкурирующими. Так как после захвата электрона с внутренней оболочки атома на его место переходит электрон с одной из более удаленных от ядра орбит, то электронный захват сопровождается всегда испусканием рентгеновского характеристического излучения.

4. Изомерный переход . После испускания альфа- или бета-частицы некоторые типы ядер находятся в возбужденном состоянии (состоянии с избыточной энергией) и испускают энергию возбуждения в виде гамма-квантов (см.Гамма-излучение). В этом случае при радиоактивном распаде ядро, кроме альфа- или бета-частиц, испускает также гамма-кванты. Так, ядра изотопа Sr90 испускают только β-частицы, ядра Na24 испускают, кроме β-частиц, также гамма-кванты. Большинство ядер находится в возбужденном состоянии очень малые промежутки времени, не поддающиеся измерению (менее 10 -9 сек.). Однако лишь относительно небольшое число ядер может находиться в возбужденном состоянии сравнительно большие промежутки времени - до нескольких месяцев. Такие ядра называются изомерами, а соответствующие переходы их из возбужденного состояния в нормальное, сопровождающиеся испусканием только гамма-квантов,- изомерными. При изомерных переходах А и Z ядра не изменяются. Радиоактивные ядра, испускающие только альфа- или бета-частицы, называются чистыми альфа- или бета-излучателями. Ядра, у которых альфа- или бета-распад сопровождается испусканием гамма-квантов, называются гамма-излучателями. Чистыми гамма-излучателями являются только ядра, находящиеся длительное время в возбужденном состоянии, т. е. претерпевающие изомерные переходы.

5. Самопроизвольное деление ядер . В результате деления из одного ядра образуется два более легких ядра - осколки деления. Так как одинаковые ядра могут делиться различным образом на два ядра, то в процессе деления образуется много различных пар более легких ядер с различными Z и А. При делении освобождаются нейтроны, в среднем 2-3 нейтрона на один акт деления ядра, и гамма-кванты. Все образующиеся при делении осколки являются неустойчивыми и претерпевают β - -распад. Вероятность деления является очень малой для урана, но возрастает с увеличением Z. Этим объясняется отсутствие на Земле более тяжелых, чем уран, ядер. В стабильных ядрах существует определенное соотношение между числом протонов и нейтронов, при котором ядро обладает наибольшей устойчивостью, т.е. наибольшей энергией связи частиц в ядре. Для легких и средних ядер наибольшей их устойчивости соответствует примерно равное содержание протонов и нейтронов. Для более тяжелых ядер наблюдается относительное увеличение числа нейтронов в устойчивых ядрах. При избытке в ядре протонов или нейтронов ядра со средним значением А являются неустойчивыми и претерпевают β - - или β + -распады, при которых происходит взаимное превращение нейтрона и протона. При избытке нейтронов (тяжелые изотопы) происходит превращение одного из нейтронов в протон с испусканием электрона и нейтрино:

При избытке протонов (легкие изотопы) происходит превращение одного из протонов в нейтрон с испусканием либо позитрона и нейтрино (β + -распад), либо только нейтрино (электронный захват):

Все тяжелые ядра с атомным номером больше, чему Pb82, являются неустойчивыми вследствие значительного количества протонов, отталкивающих друг друга. Цепочки последовательных альфа- и бета-распадов в этих ядрах происходят до тех пор, пока не образуются устойчивые ядра изотопов свинца. С улучшением экспериментальной техники у все большего количества ядер, считавшихся ранее стабильными, обнаруживают очень медленный радиоактивный распад. В настоящее время известно 20 радиоактивных изотопов с Z меньше 82.

В результате любых радиоактивных превращений количество атомов данного изотопа непрерывно уменьшается. Закон убывания с течением времени количества активных атомов (закон радиоактивного распада) является общим для всех видов превращений и всех изотопов. Он носит статистический характер (применим только для большого количества радиоактивных атомов) и заключается в следующем. Количество активных атомов данного изотопа, распадающихся за единицу времени ΔN/Δt, пропорционально количеству активных атомов N, т. е. за единицу времени распадается всегда одна и та же доля к активных атомов данного изотопа независимо от их количества. Величина к называется постоянной радиоактивного распада и представляет собой долю активных атомов, распадающихся за единицу времени, или относительную скорость распада. к измеряется в единицах, обратных единицам измерения времени, т. е. в сек.-1 (1/сек.), сутки-1, год-1 и т. п., для каждого радиоактивного изотопа имеет свое определенное значение, которое изменяется в очень широких пределах для различных изотопов. Величина, характеризующая абсолютную скорость распада, называется активностью данного изотопа или препарата. Активность 1 г вещества называется удельной активностью вещества.

Из закона радиоактивного распада следует, что убывание количества активных атомов N сначала происходит быстро, а затем все медленнее. Время, в течение которого количество активных атомов или активность данного изотопа уменьшается в два раза, называется периодом полураспада (Т) данного изотопа. Закон убывания N от времени t является экспоненциальным и имеет следующее аналитическое выражение: N=N0e-λt, где N0 - число активных атомов в момент начала отсчета времени (г=0), N - количество активных атомов спустя время t, е - основание натуральных логарифмов (число, равное 2,718...). Между постоянной распада к и периодом полураспада λ существует следующее соотношение: λТ-0,693. Отсюда

Периоды полураспада измеряются в сек., мин. и т. п. и для различных изотопов изменяются в очень широких пределах от малых долей секунды до 10+21 лет. Изотопы, обладающие большими λ и малыми Т, называются короткоживущими, изотопы с малыми λ и большими Т называются долгоживущими. Если активное вещество состоит из нескольких радиоактивных изотопов с различными периодами полураспада, генетически не связанных между собой, то с течением времени активность вещества также будет непрерывно уменьшаться и изотопный состав препарата будет все время изменяться: будет уменьшаться доля короткоживущих изотопов и возрастать доля долгоживущих изотопов. Через достаточно большой промежуток времени практически в препарате останется только самый долгоживущий изотоп. По кривым распада радиоактивных веществ, состоящих из одного или смеси изотопов, можно определить периоды полураспада отдельных изотопов и их относительные активности для любого момента времени.

Законы изменения активности генетически связанных изотопов качественно другие; они зависят от соотношения периодов их полураспада. Для двух генетически связанных изотопов с периодом Т1 для исходного изотопа и Т2 - продукта распада эти законы имеют наиболее простую форму. При T1>T2 активность исходного изотопа Q1 все время убывает по экспоненциальному закону с периодом полураспада Т1. Благодаря распаду ядер исходного изотопа будут образовываться ядра конечного изотопа и его активность Q2 будет возрастать. Спустя определенное время скорость распада ядер второго изотопа (станет близкой к скорости образования ядер этого изотопа из исходного (скорость распада исходного изотопа Q1) и эти скорости будут находиться в определенном и постоянном соотношении все дальнейшее время - наступает радиоактивное равновесие.

Активность исходного изотопа непрерывно убывает с периодом Т1, поэтому после достижения радиоактивного равновесия активность конечного изотопа Q2 и суммарная активность двух изотопов Q1+Q2 будут также убывать с периодом полураспада исходного изотопа Т1. При Т1>Т2 Q2=Q1. Если из исходного долгоживущего изотопа образуется последовательно несколько короткоживущих изотопов, как это имеет место в радиоактивном ряду урана и радия, то после достижения равновесия активности каждого короткоживущего изотопа становятся практически равными активности исходного изотопа. При этом общая активность равна сумме активностей всех короткоживущих продуктов распада и убывает с периодом: полураспада исходного долгоживущего изотопа, как и активность всех изотопов, находящихся в равновесии.

Радиоактивное равновесие достигается практически за время, равное 5-10 периодам полураспада того изотопа из продуктов распада, который имеет наибольший период полураспада. Если T1

К числу естественно радиоактивных изотопов относится около 40 изотопов периодической системы элементов с Z больше 82, которые образуют три последовательных ряда радиоактивных превращений: ряд урана (рис. 1), ряд тория (рис. 2) и ряд актиния (рис. 3). Путем последовательных альфа- и бета-распадов из исходных изотопов ряда получаются конечные устойчивые изотопы свинца.


Рис. 1. Ряд урана.


Рис. 2. Ряд тория.


Рис. 3. Ряд актиния.

Стрелками на рисунках указаны последовательные радиоактивные превращения с указанием типа распада и процента атомов, претерпевающих распад данного типа. Горизонтальными стрелками обозначены превращения, совершающиеся почти в 100% случаев, а наклонными - в незначительной части случаев. При обозначении изотопов указаны периоды их полураспада. В скобках даны прежние названия членов ряда, указывающие генетическую связь, без скобок - принятые в настоящее время обозначения изотопов, соответствующие их химической и физической природе. В рамки заключены долгоживущие изотопы, а в двойные рамки - конечные стабильные изотопы. Альфа-распад обычно сопровождается очень малоинтенсивным гамма-излучением, часть бета-излучателей испускает интенсивное гамма-излучение. Естественный фон обусловлен природной радиоактивностью-излучением и воздействием естественно радиоактивных изотопов, содержащихся на поверхности Земли, в биосфере и воздухе, и космическим излучением (см.). Кроме указанных изотопов, в различных веществах содержатся также изотоп К40 и около 20 других радиоактивных изотопов с очень большими периодами полураспада (от 109 до 1021 лет), вследствие чего их относительная активность очень мала по сравнению с активностью других изотопов.

Радиоактивные изотопы, содержащиеся в оболочке Земли, играли и играют исключительную роль в развитии нашей планеты, в частности в развитии и сохранении жизни, так как они компенсировали потери тепла, происходящие на Земле, и обеспечивали практическое постоянство температуры на планете в течение многих миллионов лет. Радиоактивные изотопы, подобно всем другим изотопам, содержатся в природе в основном в рассеянном состоянии и присутствуют во всех веществах, растительных и животных организмах.

Вследствие различия физико-химических свойств изотопов относительное содержание их в почвах и водах оказывается неодинаковым. Газообразные продукты распада урана, тория и актиния - торон, радон и актинон - из почвенных вод непрерывно поступают в воздух. Кроме этих газообразных продуктов, в воздухе содержатся также альфа- и бета-активные продукты распада радия, тория и актиния (в виде аэрозолей). Из почвы радиоактивные элементы, как и стабильные, вместе с почвенными водами поступают в растения, поэтому стебли и листья растений всегда содержат уран, радий, торий с продуктами их распада, калий и ряд других изотопов, хотя и в относительно малых концентрациях. В растениях и животных также присутствуют изотопы С14, Н3, Be7 и другие, которые образуются в воздухе под воздействием нейтронов космического излучения. Вследствие того что совершается непрерывный обмен между человеческим организмом и окружающей средой, все радиоактивные изотопы, содержащиеся в пищевых продуктах, воде и воздухе, содержатся и в организме. Изотопы находятся в организме в следующих дозах: в мягких тканях-31 мбэр/год, в костях-44мбэр/год. Доза от космического излучения составляет 80-90 мбэр/год, доза от внешнего гамма-излучения - 60-80 мбэр/год. Суммарная доза равна 140-200 мбэр/год. Доза, падающая на легкие, - 600-800 мбэр/год.

Искусственно радиоактивные изотопы получаются путем бомбардировки стабильных изотопов нейтронами или заряженными частицами в результате различных ядерных реакций, в качестве источников заряженных частиц используются различные типы ускорителей.

Об измерениях потоков и доз различных видов ионизирующих излучений - см. Дозиметрия, Дозы ионизирующих излучений, Нейтрон.

Вследствие того что большие дозы радиации вредно отражаются на здоровье людей, при работе с источниками излучений и радиоактивными изотопами применяются специальные меры защиты (см. ).

В медицине и биологии изотопы используют для изучения обмена веществ, в диагностических и терапевтических целях (см. ). Содержание радиоактивных изотопов в организме и динамику их обмена определяют при помощи счетчиков внешнего излучения от человека.

Поделиться