Сурьма: история открытия элемента. Сурьма металл

Сурьма химический элемент (франц. Antimoine, англ. Antimony, нем. Antimon, лат. Stibium, откуда символ - Sb, или Regulus antimonii; атомн. вес = 120, если О = 16) - блестящий серебристо-белый металл, обладающий грубопластинчатым кристаллическим изломом или зернистым, смотря по быстроте застывания из расплавленного состояния. Сурьма кристаллизуется в тупых ромбоэдрах, весьма близких к кубу, как и висмут (см.), и имеет уд. вес 6,71-6,86. Самородная сурьма встречается в виде чешуйчатых масс, обыкновенно с содержанием серебра, железа и мышьяка; уд. вес ее 6,5-7,0. Это самый хрупкий из металлов, легко обращаемый в порошок в обыкновенной фарфоровой ступке. Плавится С. при 629,5° [По новейшим определениям (Heycock and Neville. 1895 г.).] и перегоняется при белом калении; была определена даже плотность пара ее, каковая при 1640° оказалась несколько большей, чем требуется для принятия в частице двух атомов - Sb 2 [Именно В. Мейер и Г. Бильтц нашли в 1889 г. для плотности пара С. по отношению к воздуху следующие величины: 10,743 при 1572° и 9,781 при 1640°, что говорит о способности частицы ее диссоциировать при нагревании. Так как для частицы Sb 2 вычисляется плотность 8,3, то найденные плотности говорят как бы о неспособности этого "металла" быть в состоянии простейшем, в виде одноатомной частицы Sb 3 , что отличает его от настоящих металлов. Те же авторы исследовали плотности пара висмута, мышьяка и фосфора. Только один висмут оказался способным дать частицу Bi 1 ; для него найдены следующие плотности: 10,125 при 1700° и 11,983 при 1600°, а вычисленные для Bi 1 и Вi 2 плотности равны 7,2 и 14,4. Частицы фосфора Р 4 (при 515° - 1040°) и мышьяка As 4 (при 860°) диссоциируют от нагревания трудно, особенно Р 4 : при 1700° из 3Р 4 только одна частица - можно думать - превращается в 2Р 2 , a As4 при этом претерпевает почти полное превращение в As2 Таким образом, самый металличный из этих элементов, составляющих одну из подгрупп периодической системы есть висмут, судя по плотности пара; свойства же неметалла принадлежат в наибольшей степени фосфору, характеризуя в то же время мышьяк и в меньшей степени - С.]]. Перегонять С. можно в токе сухого газа, напр. водорода, так как она легко окисляется не только на воздухе, но и в парах воды при высокой темп., превращаясь в окись, или, что то же, в сурьмянистый ангидрид:

2Sb + 3Н 2 O = Sb2 O3 + 3Н 2 ;

если расплавить кусочек С. на угле перед паяльной трубкой и бросить его с некоторой высоты на лист бумаги, то получается масса раскаленных шариков, которые катятся, образуя белый дым окиси. При обыкновенной температуре С. не изменяется на воздухе. По формам соединений и по всем химическим отношениям С. принадлежит в V группе периодической системы элементов, именно к менее металлической ее подгруппе, которая содержит еще фосфор, мышьяк и висмут; к последним двум элементам она относится так же, как олово в IV группе относится к германию и свинцу. Важнейших типов соединений С. два - SbX 3 и SbX 5 , где она является трехвалентной и пятивалентной; очень вероятно, что эти типы в то же время и единственные. Галоидные соединения С. в особенности ясно удостоверяют только что сказанное о формах соединений.

Треххлористая

C . SbCl3 может быть получена уже по указанию Василия Валентина (XV века), именно при нагревании природной сернистой С. (Antimonium) с сулемой:

Sb2 S3 + 3HgCl2 = 2SbCl3 + 3HgS

при чем в реторте остается труднее летучая сернистая ртуть, a SbCl 3 перегоняется в виде бесцветной жидкости, застывающей в приемнике в массу, подобную коровьему маслу (Butyrum Antimonii). До 1648 г. полагали, что летучий продукт содержит ртуть; в этом году Глаубер показал неверность такого предположения. При сильном нагревании остатка в реторте он также улетучивается и дает кристаллический возгон киновари (Cinnabaris Antimonii) HgS. Проще всего готовить SbCl 3 из металлической С., действуя на нее медленным током хлора при нагревании Sb + 1 ½ Cl2 = SbCl3 , причем по исчезновении металла получается жидкий продукт, содержащий некоторое количество пятихлористой С., избавиться от которого очень легко через прибавление порошкообразной С.:

3SbCl5 + 2Sb = 5SbCl3 ;

в заключение SbCl 3 подвергается перегонке. Чeрез нагревание сернистой С. с крепкой соляной кислотой в избытке получается раствор SbCl 3 , при чем развивается сероводород:

Sb2 S3 + 6HCl = 2SbCl3 + 3H2 S.

Такой же раствор получается и при растворении окиси С. в соляной кислоте. При перегонке кислого раствора прежде всего отгоняется вода и избыточная соляная кислота, а потом гонится SbCl 3 - обыкновенно желтоватая в первых порциях (вследствие присутствия хлорного железа) и после того бесцветная. Треххлористая С. представляет кристаллическую массу, которая плавится при 73,2° и кипит при 223,5°, образуя бесцветный пар, плотность которого вполне отвечает формуле SbCl 3 , а именно равна 7,8 по отношению к воздуху. Она притягивает влагу из воздуха, расплываясь в прозрачную жидкость, из которой может быть выделена снова в кристаллическом виде при стоянии в эксикаторе над серной кислотой. По способности растворяться в воде (в малых количествах) SbCl 3 вполне сходна с другими, настоящими солями соляной кислоты, но большие количества воды разлагают SbCl 3 , превращая ее в ту или иную хлорокись , по уравн.:

SbCl3 + 2Н 2 O = (HO)2 SbCl + 2НСl = OSbCl + Н 2 O + 2НСl

и 4SbCl 3 + 5Н 2 O = O5 Sb4 Cl2 + 10HCl

которые представляют крайние пределы неполного действия воды (существуют хлорокиси промежуточного состава); большой избыток воды приводит к полному удалению хлора из сурьмяного соединения. Вода осаждает белый порошок подобных хлорокисей С., но часть SbCl 3 может оставаться в растворе и переходить в осадок при большем количестве воды. Прибавляя соляной кислоты, можно осадок снова растворить, превратить его в раствор SbCl 3 . Очевидно, окись С. (см. далее) есть основание слабое, как и окись висмута, а потому вода - в избытке - способна отнимать от него кислоту, превращая средние соли С. в основные соли , или, в данном случае, в хлорокиси; прибавление соляной кислоты аналогично уменьшению количества реагирующей воды, почему при этом хлорокиси и превращаются в SbCl 3 . Белый осадок, получающийся при действии воды на SbCl 3 , называется порошком Альгорота по имени веронского врача, употреблявшего его (в конце XVI в.) для медицинских целей.

Если насыщать хлором расплавленную треххлористую С., то получается пятихлористая С.:

SbCl3 + Cl2 = SbCl5

открытая Г. Розе (1835). Ее можно получить и из металлической С., порошок которой при всыпании в сосуд с хлором горит в нем:

Sb + 2 ½ Cl2 = SbCl5 .

Это бесцветная или слабо-желтоватая жидкость, которая дымит на воздухе и обладает противным запахом; на холоду она кристаллизуется в виде иголочек и плавится при -6°; она летучее SbCl 3 , но при перегонке частью разлагается:

SbCl5 = SbCl3 + Cl2 ;

под давлением в 22 мм кипит при 79° - без разложения (в этих условиях темп. кипения SbCl 3 = 113,5°). Плотность пара при 218° и под давлением в 58 мм равна 10,0 относительно воздуха, что отвечает приведенной частичной формуле (для SbCl 5 вычисленная плотность пара равна 10,3). С вычисленным количеством воды при 0° SbCl 5 дает кристаллический гидрат SbСl 5 + Н 2 O, растворимый в хлороформе и плавящийся при 90°; с большим количеством воды получается прозрачный раствор, который при испарении над серной кислотой дает другой кристаллический гидрат SbСl 5 + 4Н 2 O, уже не растворимый в хлороформе (Аншютц и Эванс, Вебер). К горячей воде SbCl 5 относится, как хлорангидрид, давая с избытком ее кислый гидрат (см. ниже). Пятихлористая С. легко переходит в треххлористую, если присутствуют вещества, способные присоединять хлор, вследствие чего она часто применяется в органической химии для хлорирования; это - "передатчик хлора". Треххлористая С. способна образовать кристаллические соединения, двойные соли с некоторыми хлористыми металлами; подобные соединения дает и пятихлористая сурьма с различными соединениями и окисями. Известны соединения сурьмы и с прочими галоидами, а именно SbF 3 и SbF 5 , SbBr3 , SbJ3 и SbJ 5 .
, или сурьмянистый ангидрид , принадлежит к типу треххлористой С. и потому может быть представлена формулой Sb 2 O3 , но определения плотности пара (при 1560°, В. Мейер, 1879), которая найдена равною 19,9 по отношению к воздуху показали, что этому окислу должно придавать удвоенную формулу Sb 4 O6 , аналогично с мышьяковистым и фосфористым ангидридами. Окись С. встречается в природе в виде валентинита , образуя белые, блестящие призмы ромбической системы, уд. веса 5,57, и реже - сенармонтита - бесцветные или серые октаэдры, с уд. вес. 5,2-5,3, а также иногда покрывает в виде землистого налета - сурьмяная охра - различные руды С. Окись получается также при обжигании сернистой С. и возникает как окончательный продукт действия воды на SbСl 3 в кристаллическом виде и в аморфном - при обработке металлической или сернистой С. разведенною азотною кислотою при нагревании. Окись С. обладает белым цветом, при нагревании желтеет, при более высокой температуре плавится и, наконец, улетучивается при белом калении. При охлаждении расплавленной окиси она получается в кристаллическом виде. Если нагревать окись С. в присутствии воздуха, то она поглощает кислород, превращаясь в нелетучий окисел SbO 2 , или, что вероятнее, в Sb 2 O4 (см. ниже). Основные свойства окиси С. весьма слабы, что уже указано выше; соли ее чаще всего основные. Из минеральных кислородных кислот почти одна серная способна давать соли С.; средняя соль Sb 2 (SO4 )3 получается, когда нагревают металл или окись с концентрированной серной кислотой, в виде белой массы и кристаллизуется из несколько разведенной серной кислоты в длинных, с шелковистым блеском иглах; вода разлагает ее на растворимую кислую и нерастворимую основную соль. Существуют соли с органическими кислотами, напр. основная сурьмяно-калиевая соль винной кислоты, или рвотный камень KO-CO-CH(OH)-CH(OH)-CO-O-SbO + ½ H2 O (Tartarus emeticus), довольно растворимая в воде (в 12,5 вес. част. при 21°). Окись С. обладает, с другой стороны, слабыми ангидридными свойствами, в чем легко убедиться, если приливать раствор едкого кали или натра к раствору SbCl 3 : образующийся белый осадок растворяется в избытке реактива, подобно тому как это имеет место для растворов солей алюминия. Преимущественно для калия и натрия известны соли сурьмянистой кислоты, например из кипящего раствора Sb 2 O3 в едком натре кристаллизуется сурьмянистокислый натрий NaSbO2 + 3H2 O, в блестящих октаэдрах; известны еще такие соли - NaSbO 2 + 2HSbO2 и KSbO 2 + Sb2 O3 [Быть может, эту соль можно рассматривать как основную двойную соль, калиево-сурьмяную, ортосурьмянистой кислоты -

]. Кислота соответствующая, т. е. метакислота (по аналогии с названиями фосфорных кислот), HSbO 2 , однако, неизвестна; известны орто- и пирокислоты: H 3 SbO3 получается в виде тонкого белого порошка при действии азотной кислоты на раствор упомянутой двойной соли винной кислоты и имеет этот состав после высушивания при 100°; Н 4 Sb2 O5 образуется, если подвергнуть щелочной раствор трехсернистой С. действию медного купороса в таком количестве, чтобы фильтрат перестал давать оранжевый осадок с уксусной кислотой - осадок тогда получается белый и имеет указанный состав.

Высший окисел типа пятихлористой С. есть сурьмяный ангидрид Sb2 O5 . Он получается при действии энергично кипящей азотной кислоты на порошок С. или на ее окись; образовавшийся порошок подвергают затем осторожному нагреванию; он содержит обыкновенно примесь низшего окисла. В чистом виде ангидрид можно получить из растворов солей сурьмяной кислоты, разлагая их азотной кислотой и подвергая промытый осадок нагреванию до полного удаления элементов воды; это - желтоватый порошок, нерастворимый в воде, однако, сообщающий ей способность окрашивать синюю лакмусовую бумажку в красный цвет. В азотной кислоте ангидрид совершенно нерастворим, в соляной же (крепкой) растворяется, хотя и медленно, вполне; при нагревании с нашатырем способен улетучиваться. Известны три гидрата сурьмяного ангидрида, обладающих составом, отвечающим гидратам фосфорного ангидрида. Ортосурьмяная кислота H3 SbO4 получается из метасурьмянокислого калия через обработку его разведенной азотной кислотой и имеет надлежащий состав после промывки и сушения при 100°; при 175° она превращается в метакислоту HSbO3 ; оба гидрата суть белые порошки, растворимые в растворах едкого кали и трудно - в воде; при более сильном нагревании превращаются в ангидрид. Пиросурьмяная кислота (Фреми назвал ее метакислотой) получается при действии горячей воды на пятихлористую С. в виде белого осадка, который по высушивании на воздухе имеет состав Н 4 Sb2 O7 + 2Н 2 O, а при 100° превращается в безводную кислоту, которая при 200° (и даже просто при стоянии под водой - со временем) превращается в метакислоту. Пирокислота растворимее в воде, чем ортокислота; она способна растворяться также в холодном нашатырном спирте, к чему ортокислота не способна. Соли известны только для мета- и пирокислоты, что дает, вероятно, право придать ортокислоте формулу HSbO 3 + Н 2 O, считать ее гидратом метакислоты. Натриевая и калиевая метасоли получаются при сплавлении с соответственной селитрой порошка металлической С. (или из сернистой С.). С KNO 3 получается после промывки водой белый порошок, растворимый в заметном количестве в воде и способный кристаллизоваться; выделенная из раствора и высушенная при 100° соль содержит воду 2KSbOЗ + 3H2 O; при 185° она теряет одну частицу воды и превращается в KSbO 3 + H2 O. Соответствующая натриевая соль имеет состав 2NaSbOЗ + 7H2 O, которая при 200° теряет 2H 2 О и делается безводной только при красном калении. Даже угольная кислота способна разлагать эти соли: если пропускать СО 2 через раствор калиевой соли, то получается труднорастворимый осадок такой кислой соли 2K 2 O∙3Sb2 O5 + 7H2 O (это после высушивания при 100°, после сушения при 350° остается еще 2H 2 O). Если растворить метакислоту в горячем растворе аммиака, то при охлаждении кристаллизуется аммонийная соль (NH 4 )SbO3 , трудно растворимая на холоду. Окисляя окись С., растворенную в едком кали (сурьмянисто-кислый калий), хамелеоном и испаряя затем фильтрат, получают кислый пиросурьмянокислый калий К 2 H2 Sb2 O7 + 4Н 2 O; эта соль довольно растворима в воде (при 20° - 2,81 ч. безводной соли в 160 ч. воды) и служит реактивом при качественном анализе на соли натрия (в среднем растворе), так как соответственная кристаллическая соль Na 2 H2 Sb2 O7 + 6H2 O очень трудно растворима в воде. Это, можно сказать, наиболее трудно растворимая соль натрия, особенно в присутствии некоторого количества спирта; когда в растворе находится только 0,1% натриевой соли, то и в этом случае появляется кристаллический осадок пиросоли. Так как сурьмяные соли лития, аммония и щелочноземельных металлов также образуют осадки, то, понятно, эти металлы должны быть удалены предварительно. Соли остальных металлов трудно растворимы или нерастворимы в воде; они могут быть получены через двойное разложение в виде кристаллических осадков и превращаются слабыми кислотами в кислые соли, а сильные кислоты вытесняют сурьмяную кислоту вполне. Почти все антимониаты растворимы в соляной кислоте.

При сильном нагревании на воздухе каждого из описанных окислов С. получается еще один окисел, именно Sb 2 O4 :

Sb2 O5 = Sb2 O4 + ½O2 и Sb 2 O3 + ½O2 = Sb2 O4 .

Этот окисел можно считать содержащим трехвалентную и пятивалентную С., т. е. в таком случае это была бы средняя соль ортосурьмяной кислоты Sb "" SbO4 или основная - метакислоты OSb-SbO 3 . Этот окисел есть наиболее устойчивый при высокой температуре и представляет аналогию с суриком (см. Свинец) и в особенности с соответствующим окислом висмута Bi 2 O4 (см. Висмут). Sb 2 O4 представляет нелетучий белый порошок, весьма трудно растворимый в кислотах и получающийся вместе с Sb 2 O3 при обжигании природной сернистой С. - Sb2 O4 обладает способностью соединяться со щелочами; при сплавлении с поташом после промывки водой получается белый продукт, растворимый в горячей воде и имеющий состав K 2 SbO5 ; это солеобразное вещество есть, быть может, двойная сурьмяно-калиевая соль ортосурьмяной кислоты (OSb)K 2 SbO4 . Соляная кислота осаждает из раствора такой соли кислую соль K 2 Sb4 O9 , которую можно считать за двойную соль пиросурьмяной кислоты, именно (OSb) 2 K2 Sb2 O7 . В природе встречаются подобные двойные (?) соли для кальция и для меди: ромеит (OSb)CaSbO4 и аммиолит (OSb)CuSbO4 . В виде Sb 2 O4 можно взвешивать С. при количественном анализе; необходимо только промытое кислородное соединение металла прокаливать при хорошем доступе воздуха (в открытом тигле) и тщательно заботиться, чтобы горючие газы из пламени не попадали в тигель.

По способу образования сернистых соединений С., как и мышьяк, может быть причислена к настоящим металлам с большим правом, чем, напр., хром. Все соединения трехвалентной С. в кислых растворах (лучше всего в присутствии соляной кисл.) при действии сероводорода превращаются в оранжево-красный осадок трехсернистой С., Sb 2 S3 , который, кроме того, содержит еще воду. Соединения пятивалентной С., также в присутствии соляной кислоты, с сероводородом дают желтовато-красный порошок пятисернистой С. Sb 2 S5 , содержащий обыкновенно еще примесь Sb 2 S3 и свободной серы; чистая Sb 2 S5 получается, когда при обыкновенной температуре прибавляют избыток сероводородной воды к подкисленному раствору сурьмяной соли (Бунзен); в смеси с Sb 2 S3 и серой получают ее, если пропускают сероводород в нагретый кислый раствор; чем ниже температура осаждаемого раствора и чем быстрее ток сероводорода, тем меньше получается Sb 2 S3 и серы и тем чище осаждаемая Sb 2 S5 (Bosêk, 1895). С другой стороны, Sb 2 S3 и Sb 2 S5 , как и соответствующие соединения мышьяка, обладают свойствами ангидридов; это тиоангидриды ; соединяясь с сернистым аммонием или с сернистыми калием, натрием, барием и проч., они дают тиосоли , напр. Na 3 SbS4 и Ba 3 (SbS4 )2 или KSbS 2 и проч. Эти соли аналогичны, очевидно, с кислородными солями элементов группы фосфора; они содержат двухвалентную серу вместо кислорода и называются обыкновенно сульфосолями , что ведет к спутанности понятий, напоминая о солях сульфокислот органических, которые лучше всего было бы всегда называть сульфононовыми кислотами [Точно так же и названия сульфо ангидриды (SnS 2 , As2 S5 и проч.) и сульфо основания (N 2 S, BaS и проч.) следовало бы заменить тио ангидридами и тио основаниями.]. Трехсернистая С. Sb 2 S3 под именем сурьмяного блеска представляет важнейшую руду С.; она довольно распространена среди кристаллических и более старых слоистых каменных пород; встречается в Корнваллисе, Венгрии, Трансильвании, Вестфалии, Шварцвальде, Богемии, Сибири; в Японии ее находят в виде особо крупных хорошо образованных кристаллов, а на Борнео встречаются значительные залежи. Кристаллизуется Sb 2 S3 в призмах и образует обыкновенно лучисто-кристаллические, серовато-черные массы с металлическим блеском; уд. вес 4,62; легкоплавка и легко измельчается в порошок, который марает пальцы подобно графиту и издавна (Библия , книга прор. Иезекииля, XXIII, 40) употреблялся как косметическое средство для подводки бровей; под именем "сурьмы" она употреблялась и, вероятно, употребляется еще для этой цели и у нас. Черная сернистая С. в торговле (Antimonium crudum) есть выплавленная руда; этот материал в изломе представляет серый цвет, металлический блеск и кристаллическое сложение. В природе, кроме того, встречаются многочисленные солеобразные соединения Sb 2 S3 с различными сернистыми металлами (тиооснованиями), напр.: бертьерит Fe(SbS2 )2 , вольфсбергит CuSbS2 , буланжерит Pb3 (SbS3 )2 , пираргирит , или красная серебряная руда, Ag 3 SbS3 , и др. Руды, содержащие, кроме Sb 2 S3 , сернистые цинк, медь, железо и мышьяк, суть так наз. блеклые руды. Если расплавленная трехсернистая С. подвергается быстрому охлаждению до затвердевания (вливают в воду), то она получается в аморфном виде и имеет тогда меньший уд. вес, именно 4,15, обладает свинцово-серым цветом, в тонких слоях просвечивает гиацинтово-красным и в виде порошка имеет красно-бурую окраску; она не проводит электричество, что свойственно кристаллическому видоизменению. Из так наз. сурьмяной печени (hepar antimontii), которая получается при сплавлении кристаллической Sb 2 S3 с едким кали или поташом и содержит смесь тиоантимониита и антимониита калия [Растворы такой печени очень способны поглощать кислород воздуха. Другой сорт печени, которая готовится из порошковатой смеси Sb 2 S3 и селитры (в равных количествах), причем реакция начинается от раскаленного уголька, брошенного в смесь, и идет весьма энергично при постепенном прибавлении смеси, содержит, кроме KSbS 2 и KSbO 2 , еще K 2 SO4 , a также некоторое количество сурьмяной кислоты (К-соли).]:

2Sb2 S3 + 4KOH = 3KSbS2 + KSbO2 + 2H2 O

точно так же можно получить аморфную трехсернистую С., для чего извлекают печень водой и профильтрованный раствор разлагают серной кислотой или кристаллическую Sb 2 S3 обрабатывают кипящим раствором КОН (или К 2 СО 3 ), а затем фильтрат разлагают кислотой; в обоих случаях промывают осадок сильно разведенной кислотой (винной под конец) и водой и высушивают при 100°. Получается легкий красно-бурый, маркий порошок сернистой С., растворимый в соляной кислоте, едких и углекислых щелочах гораздо легче, чем кристаллическая Sb 2 S3 . Подобные препараты сернистой С., только не вполне чистые, известны с давних пор под именем "минерального кермеса" и находили применение в медицине и как краска. Оранжево-красный осадок гидрата Sb 2 S3 , который получается при действии сероводорода на кислые растворы окиси С., теряет (промытый) воду при 100°-130° и превращается в черное видоизменение при 200°; под слоем разбавленной соляной кислоты в токе углекислого газа превращение это совершается уже при кипячении (лекционный опыт Митчелля, 1893 г.). Если прибавить сероводородной воды к раствору рвотного камня, то получается оранжево-красный (при проходящем свете) раствор коллоидальной Sb 2 S3 , которая осаждается при прибавлении хлористого кальция и некоторых других солей. Нагревание в токе водорода приводит Sb 2 S3 к полному восстановлению металла, в атмосфере же азота она только возгоняется. Кристаллическая Sb 2 S3 идет на приготовление прочих соединений С., а также применяется как горючее вещество в смеси с бертолетовой солью и другими окислителями для пиротехнических целей, входит в состав головок шведских спичек и употребляется для иных запальных приспособлений, имеет также лекарственное значение - как слабительное для животных (лошадей). Пятисернистая С. может быть получена, как указано выше, или через разложение разбавленной кислотой упомянутых растворимых тиосолей:

2K З SbS4 + 6HCl = Sb2 S5 + 6KCl + 3H2 S.

Она в природе не встречается, но известна уже давно; Глаубер описал (в 1654 г.) получение ее из шлака, который образуется при приготовлении металлической С. из сурьмяного блеска при сплавлении его с винным камнем и селитрой, действием уксусной кислоты и рекомендовал как слабительное средство (panacea antimonialis seu sulfur purgans universale). С этим сернистым соединением приходится иметь дело при анализе: сероводород осаждает из подкисленного раствора металлы 4-й и 5-й аналитических групп; среди последних и находится С.; она осаждается обыкновенно в виде смеси Sb 2 S5 и Sb 2 S3 (см. выше) или только в виде Sb 2 S З (когда в осаждаемом растворе не было соединений типа SbX 5 ) и затем отделяется действием многосернистого аммония от сернистых металлов 4-й группы, которые остаются при этом в осадке; Sb 2 S3 переводится многосернистым аммонием в Sb 2 S5 и затем вся С. оказывается в растворе в виде аммонийной тиосоли высшего типа, из которого по отфильтровании осаждается кислотою вместе с друг. сернистыми металлами 5-й группы, если таковые были в исследуемом веществе. Пятисернистая С. нерастворима в воде, легко растворима в водных растворах едких щелочей, их углекислых солей и сернистых щелочных металлов, также в сернистом аммонии и в горячем растворе аммиака, но не углекислого аммония. Когда Sb 2 S5 подвергается действию солнечного света или нагревается под водой при 98°, а также и без воды, но в отсутствие воздуха, то она распадается по уравнению:

Sb2 S5 = Sb2 S3 + 2S

вследствие чего при нагревании с крепкой соляной кислотой дает серу, сероводород и SbCl 3 . Тиосурьмянокислый нampий , или "соль Шлиппе", которая кристаллизуется в больших правильных тетраэдрах, бесцветных или желтоватых, состава Nа 3 SbS4 + 9Н 2 O, может быть получена при растворении смеси Sb 2 S3 и серы в растворе едкого натра определенной концентрации или путем сплавления безводного сернокислого натрия и Sb 2 S3 с углем и кипячения затем водного раствора полученного сплава с серой. Растворы этой соли имеют щелочную реакцию и соляной, холодящий и вместе с тем горьковато-металлический вкус. Подобным же образом может быть получена и калиевая соль, а бариевая возникает при растворении Sb 2 S5 в растворе BaS; эти соли образуют кристаллы состава K3 SbS4 + 9H2 O и Ва 3 (SbS4 )2 + 6Н 2 O. Пятисернистая С. употребляется при вулканизации каучука (см.) и сообщает ему известный буро-красный цвет.

Сурьмянистый водород

, или стибин, SbH 3 . Если водород образуется в растворе, содержащем какое-либо растворимое соединение С. (прибавляют, например, к смеси цинка и разведенной серной кислоты раствора SbCl 3 ), то он не только восстановляет (в момент выделения) ее, но и соединяется с нею; при действии воды на сплавы С. с калием или натрием или разведенной кислоты на сплав ее с цинком точно так же образуется SbH 3 . Во всех случаях газообразный SbH 3 получается в смеси с водородом; наиболее бедную водородом смесь можно получить (F. Jones), если приливать по каплям концентрированный раствор SbCl 3 в крепкой соляной кислоте к избытку гранулированного или порошкообразного цинка, причем SbH 3 частью разлагается (стенки колбы покрываются зеркальным налетом С.) и получается газообразная смесь, которая содержит SbH 3 не более 4%. Что чистый SbH 3 нельзя иметь при обыкновенной темп., особенно ясно из опытов К. Ольшевского, который показал, что это вещество замерзает при -102,5°, образуя снегоподобную массу, плавится в бесцветную жидкость при -91,5° и кипит при -18°, и что жидкий SbH 3 начинает разлагаться уже при - 65° - 56°. Полное разложение разбавленного водородом SbH 3 происходит при 200° - 210°; он разлагается гораздо легче мышьяковистого водорода, что, вероятно, находится в связи с большим поглощением тепла при образовании из элементов (на граммов. частицу - 84,5 б. кал.) [Разлагаемостью при нагревании SbH 3 можно пользоваться для качественного открытия соединений С. по способу Марша (см. Мышьяк).]. SbH 3 обладает противным запахом и весьма неприятным вкусом; в 1 объеме воды при 10° растворяется от 4 до 5 об. SbH 3 ; в такой воде рыбы гибнут через несколько часов. На солнечном свете, быстрее при 100°, сера разлагает SbH 3 по уравн.:

2SbH3 + 6S = Sb2 S З +3H2 S

при чем получается оранжево-красное видоизменение Sb 2 S3 ; разлагающим образом действует, даже в темноте, и сероводород, который сам разлагается при этом:

2SbH3 + 3Н 2 S = Sb2 S3 + 6Н 2 .

Если пропустить SbH 3 (с Н 2 ) в раствор азотнокислого серебра, то получается черный осадок, который представляет сурьмянистое серебро с примесью металлического серебра:

SbH3 + 3AgNO3 = Ag3 Sb + 3HNO3 ;

это соединение С. встречается и в природе - дискразит. Растворы едких щелочей растворяют SbH 3 , приобретая бурый цвет и способность поглощать кислород из воздуха. Подобные же отношения характеризуют и мышьяковистый водород; оба водородистые соединения не обнаруживают ни малейшим образом способности давать производные аммониевого типа; они скорее напоминают о сероводороде и проявляют свойства кислот. Иных водородистых соединений С., более бедных водородом, судя по аналогиям, не известно с достоверностью; металлическая С., полученная электролизом и обладающая способностью взрываться, содержит водород; быть может, здесь и присутствует подобное водородистое соединение, которое взрывчато, как бедные водородом ацетилен или азотистоводородная кислота. Существование летучего, газообразного даже, водородистого соединения для С. позволяет в особенности относить ее к числу неметаллов; а неметалличность ее находится, вероятно, в связи со способностью давать разнообразные сплавы с металлами.
С . находят весьма значительное применение; присутствие в них С. обусловливает увеличение блеска и твердости, а при значительных количествах - и хрупкости сплавленных с нею металлов. Сплав, состоящий из свинца и С. (обыкновенно 4 ч. и 1 ч.), употребляется для отливки типографских букв, для чего часто готовят сплавы, содержащие сверх того значительное количество олова (10-25%), а иногда еще и немного меди (около 2%). Так наз. "британский металл" представляет сплав 9 ч. олова, 1 ч. С. и содержит медь (до 0,1%); он употребляется для приготовления чайников, кофейников и т. под. посуды. "Белый, или антифрикционный, металл" - сплавы, употребляющиеся для подшипников; такие сплавы содержат около 10% С. и до 85% олова, которое иногда заменяется почти наполовину свинцом (Babbit"s metall), сверх того, до 5% меди, количество которой падает в пользу С. до 1,5%, если в сплаве находится свинец; 7 ч. С. с 3 ч. железа образуют при белом калении "сплав Реомюра", который очень тверд и дает при обработке напилком искры. Известны два кристаллических соединения с цинком (Cooke jr.) Zn3 Sb2 и Zn 2 Sb2 и пурпуровый сплав с медью состава Cu 2 Sb (Regulus Veneris). Сплавы с натрием или калием, которые готовятся сплавлением С. с углекислыми щелочными металлами и углем, а также накаливанием окиси С. с винным камнем, в сплошном состоянии довольно постоянны на воздухе, но в виде порошков и при значительном содержании щелочного металла способны самовоспламеняться на воздухе, а с водой выделяют водород, дают едкую щелочь в растворе и порошок сурьмы в осадке. Сплав, который получается при белом калении тесной смеси 5 частей винного камня и 4 частей С., содержит до 12% калия и употребляется для получения металлоорганических соединений С. (см. также Сплавы).

Металлоорганические соединения

С. получаются при действии цинкорганических соединений на треххлористую С.:

2SbCl3 + 3ZnR2 = 2SbR З + 3ZnCl2 ,

где R = СН 3 или C 2 H5 и пр., а также при взаимодействии RJ, йодистых спиртовых радикалов, с упомянутым выше сплавом С. с калием. Триметилстибин Sb(CH3 )3 кипит при 81°, уд. вес 1,523 (15°); триэтилстибин кипит при 159°, уд. вес 1,324 (16°). Это почти не растворимые в воде, обладающие запахом лука жидкости, которые самовоспламеняются на воздухе. Соединяясь с RJ, стибины дают йодистые стибонии R4 Sb-J, из которых - совершенно аналогично четырехзамещенным углеводородными радикалами йодистым аммониям, фосфониям и арсониям - можно получить основные гидраты окисей замещенных стибониев R 4 Sb-OH, обладающие свойствами едких щелочей. Но, кроме того, стибины весьма сходны по своим отношениям с двухвалентными электроположительного характера металлами; они не только легко соединяются с хлором, серою и кислородом, образуя солеобразные соединения, напр. (CH 3 )3 Sb=Cl2 и (CH 3 )3 Sb=S, и окиси, например (CH 3 )3 Sb=O, но даже вытесняют водород из кислот, подобно цинку, напр.:

Sb(C2 Н 5 )3 + 2СlH = (С 2 H5 )3 Sb = Сl 2 + Н 2 .

Сернистые стибины осаждают из соляных растворов сернистые металлы, превращаясь в соответствующие соли, например:

(C2 H5 )3 Sb = S + CuSO4 = CuS + (C2 H5 )3 Sb=SO4 .

Из сернокислого стибина можно получить раствор его окиси, осаждая серную кислоту едким баритом:

(C2 H5 )3 Sb = SО 4 + Ва(OН) 2 = (С 2 H5 )3 Sb = О + BaSO 4 + Н 2 O.

Такие окиси получаются и при осторожном действии воздуха на стибины; они растворимы в воде, нейтрализуют кислоты и осаждают окиси настоящих металлов. По составу и строению окиси стибинов совершенно аналогичны окисям фосфинов и арсинов, но отличаются от них сильно выраженными основными свойствами. Трифенилстибин Sb(C6 H5 )3 , который получается при действии натрия на бензольный раствор смеси SbCl 3 с хлористым фенилом и кристаллизуется в прозрачных табличках, плавящихся при 48°, способен соединяться с галоидами, но не с серой или СН 3 J: присутствие отрицательных фенилов понижает, след., металлические свойства стибинов; это тем более интересно, что соответствующие отношения аналогичных соединений более металличного висмута совершенно обратны: бисмутины Β iR3 , содержащие предельные радикалы, не способны к присоединениям вообще, a Β i(C6 Η 5 )3 дает (C 6 H5 )3 Bi=Cl2 и (C 6 H5 )3 Bi=Вr 2 (см. Висмут). Как будто электроположительный характер Вi необходимо ослабить электроотрицательными фенилами, чтобы получилось соединение, подобное металлическому двухвалентному атому.

С. С. Колотов.

Δ .

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. - С.-Пб.: Брокгауз-Ефрон . - ЗОЛОТО (лат. Aurum), Au (читается «аурум»), химический элемент с атомным номером 79, атомная масса 196,9665. Известно с глубокой древности. В природе один стабильный изотоп 197Au. Конфигурация внешней и предвнешней электронных оболочек… … Энциклопедический словарь

- (фр. Chlore, нем. Chlor, англ. Chlorine) элемент из группы галоидов; знак его Cl; атомный вес 35,451 [Пo расчету Кларке данных Стаса.] при O = 16; частица Cl 2, которой хорошо отвечают найденные Бунзеном и Реньо плотности его по отношению к… …

- (хим.; Phosphore франц., Phosphor нем., Phosphorus англ. и лат., откуда обозначение P, иногда Ph; атомный вес 31 [В новейшее время атомный вес Ф. найден (van der Plaats) такой: 30,93 путем восстановления определенным весом Ф. металлического… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

- (Soufre франц., Sulphur или Brimstone англ., Schwefel нем., θετον греч., лат. Sulfur, откуда символ S; атомный вес 32,06 при O=16 [Определен Стасом по составу сернистого серебра Ag 2 S]) принадлежит к числу важнейших неметаллических элементов.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

- (Platine фр., Platina или um англ., Platin нем.; Pt = 194,83, если О = 16 по данным К. Зейберта). П. обыкновенно сопровождают другие металлы, и те из этих металлов, которые примыкают к ней по своим химическим свойствам, получили название… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

- (Soufre франц., Sulphur или Brimstone англ., Schwefel нем., θετον греч., лат. Sulfur, откуда символ S; атомный вес 32,06 при O=16 [Определен Стасом по составу сернистого серебра Ag2S]) принадлежит к числу важнейших неметаллических элементов. Она… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Ы; ж. [перс. surma металл] 1. Химический элемент (Sb), синевато белый металл (употребляется в различных сплавах в технике, в типографском деле). Выплавка сурьмы. Соединение сурьмы с серой. 2. В старину: краска для чернения волос, бровей, ресниц.… … Энциклопедический словарь

- (перс. sourme). Металл, встречающийся в природе в соединении с серою; употребляется в медицине как рвотное. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. СУРЬМА антимоний, металл серого цвета; уд. в. 6,7;… … Словарь иностранных слов русского языка

Атомный номер 51
Внешний вид простого вещества металл серебристо-белого цвета
Свойства атома
Атомная масса
(молярная масса)
121,760 а. е. м. ( /моль)
Радиус атома 159 пм
Энергия ионизации
(первый электрон)
833,3 (8,64) кДж/моль (эВ)
Электронная конфигурация 4d 10 5s 2 5p 3
Химические свойства
Ковалентный радиус 140 пм
Радиус иона (+6e)62 (-3e)245 пм
Электроотрицательность
(по Полингу)
2,05
Электродный потенциал 0
Степени окисления 5, 3, −3
Термодинамические свойства простого вещества
Плотность 6,691 /см ³
Молярная теплоёмкость 25,2 Дж /( ·моль)
Теплопроводность 24,43 Вт /( ·)
Температура плавления 903,9
Теплота плавления 20,08 кДж /моль
Температура кипения 1908
Теплота испарения 195,2 кДж /моль
Молярный объём 18,4 см ³/моль
Кристаллическая решётка простого вещества
Структура решётки тригональная
Параметры решётки 4,510
Отношение c/a n/a
Температура Дебая 200,00
Sb 51
121,760
4d 10 5s 2 5p 3

— элемент главной подгруппы пятой группы пятого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 51. Обозначается символом Sb (лат. Stibium). Простое вещество сурьма (CAS-номер: 7440-36-0) — металл (полуметалл) серебристо-белого цвета с синеватым оттенком, грубозернистого строения. Известны четыре металлических аллотропных модификаций сурьмы, существующих при различных давлениях, и три аморфные модификации.

Историческая справка

Сурьма известна с глубокой древности. В странах Востока она употреблялась примерно за 3000 лет до н. э. для изготовления сосудов. В Древнем Египте уже в 19 в. до н. э. порошок сурьмяного блеска (природный Sb 2 S 3) под названием mesten или stem применялся для чернения бровей. В Древней Греции он был известен как stími и stíbi , отсюда латинский stibium . Около 12—14 вв. н. э. появилось название antimonium . В 1789 А. Лавуазье включил сурьму в список химических элементов под названием antimoine (современный английский antimony , испанский и итальянский antimonio , немецкий Antimon ). Русская «сурьма» произошло от турецкого sürme; им обозначался порошок свинцового блеска PbS, также служивший для чернения бровей (по другим данным, «сурьма» — от персидского «сурме» — металл). Подробное описание свойств и способов получения сурьмы и её соединений впервые дано алхимиком Василием Валентином (Германия) в 1604.

Нахождение в природе

В среднетемпературных гидротермальных жилах с рудами серебра, кобальта и никеля, также в сульфидных рудах сложного состава.

Изотопы сурьмы

Природная сурьма является смесью двух изотопов: 121 Sb (изотопная распространённость 57,36 %) и 123 Sb (42,64 %). Единственный долгоживущий радионуклид — 125 Sb с периодом полураспада 2,76 года, все остальные изотопы и изомеры сурьмы имеют период полураспада, не превышающий двух месяцев, что не позволяет использовать их в ядерном оружии.

Пороговая энергия для реакций с высвобождением нейтрона (1-го):
121 Sb — 9,248 Мэв
123 Sb — 8,977 Мэв
125 Sb — 8,730 Мэв

Физические и химические свойства

Сурьма в свободном состоянии образует серебристо-белые кристаллы с металлическим блеском, плостность 6,68 г/см³. Напоминая внешним видом металл, кристаллическая сурьма обладает большей хрупкостью и меньшей тепло- и электропроводностью.

Применение

Сурьма всё больше применяется в полупроводниковой промышленности при производстве диодов, инфракрасных детекторов, устройств с эффектом Холла. В виде сплава этот металлоид существенно увеличивает твёрдость и механическую прочность свинца.
Используется:

— батареи
— антифрикционные сплавы
— типографские сплавы
— стрелковое оружие и трассирующие пули
— оболочки кабелей
— спички
— лекарства, противопротозойные средства
— пайка отдельные бессвинцовые припои содержат 5 % Sb
— использование в линотипных печатных машинах

Соединения сурьмы в форме оксидов, сульфидов, антимоната натрия и трихлорида сурьмы, применяются в производстве огнеупорных соединений, керамических эмалей, стекла, красок и керамических изделий. Триоксид сурьмы является наиболее важным из соединений сурьмы и главным образом используется в огнестойких композициях. Сульфид сурьмы является одним из ингредиентов в спичечных головках.

Природный сульфид сурьмы, стибнит, использовали в библейские времена в медицине и косметике. Стибнит до сих пор используется в некоторых развивающихся странах в качестве лекарства. Соединения сурьмы — меглюмина антимониат (глюкантим) и натрия стибоглюконат (пентостам), применяются в лечении лейшманиоза .

Физические свойства

Обыкновенная сурьма это серебристо-белый с сильным блеском металл. В отличие от большинства других металлов, при застывании расширяется. Sb понижает точки плавления и кристаллизации свинца, а сам сплав при отвердении несколько расширяется в объёме. Вместе с оловом и медью сурьма образует металлический сплав — Баббит, обладающий антифрикционными свойствами(использование в подшипниках).Также Sb добавляется к металлам, предназначенным для тонких отливок.

Красной ртути ». Особенность этого вещества состоит в том что оно является своего рода многофункциональным ядерным катализатором (коэффициент размножения нейтронов 7—9) и должно очень строго учитываться любой страной ввиду угрозы ядерного терроризма.

Цены

Цены на металлическую сурьму в слитках чистотой 99 % составили около 5,5 долл/кг.

Термоэлектрические материалы

Теллурид сурьмы применяется как компонент термоэлектрических сплавов (термо-э.д.с 100—150 мкВ/К) с теллуридом висмута.

Биологическая роль и воздействие на организм

Сурьма относится к микроэлементам. Её содержание в организме человека составляет 10 -6 % по массе. Постоянно присутствует в живых организмах, физиологическая и биохимическая роль не выяснена. Сурьма проявляет раздражающее и кумулятивное действие. Нaкапливается в щитовидной железе, угнетает её функцию и вызывает эндемический зоб. Однако, попадая в пищеварительный тракт, соединения сурьмы не вызывают отравления, так как соли Sb(III) там гидролизуются с образованием малорастворимых продуктов. При этом соединения сурьмы (III) более токсичны чем сурьмы (V). Пыль и пары Sb вызывают носовые кровотечения, сурьмяную «литейную лихорадку», пневмосклероз, поражают кожу, нарушают половые функции. Порог восприятия привкуса в воде — 0,5 мг/л. Смертельная доза для взрослого человека — 100 мг, для детей — 49 мг. Для аэрозолей сурьмы ПДК в воздухе рабочей зоны 0,5 мг/м 3 , в атмосферном воздухе 0,01 мг/м 3 . ПДК в почве 4,5 мг/кг. В питьевой воде сурьма относится ко 2 классу опасности, имеет ПДК 0,005 мг/л, установленное по санитарно-токсикологическому ЛПВ . В природных водах норматив содержания составляет 0,05 мг/л. В сточных промышленных водах, сбрасываемых на очистные сооружения, имеющие биофильтры, содержание сурьмы не должно превышать 0,2 мг/л.

Сурьма (лат. Stibium ), Sb , химический элемент V группы периодической системы Менделеева; атомный номер 51, атомная масса 121,75; металл серебристо-белого цвета с синеватым оттенка в природе известны два стабильных изотопа 121 Sb (57,25%) и 123 Sb (42,75%).

Сурьма известна с глубокой древности. В странах Востока она употреблялась примерно за 3000 лет до н.э. для изготовления сосудов. В Древнем Египте уже в 19в до н.э. порошок сурьмяного блеска ( Sb 2 S 3 ) под названием mesten или stem применялся для чернения бровей. В Древней Греции он был известен как stimi и stibi , отсюда латинский stibium .около 12-14 вв. н.э. появилось название antimonium . В 1789г А. Лувазье включил сурьму в список химических элементов под названием antimoine (современный английский antimony , испанский и итальянский antimonio , немецкий antimon ). Русская “сурьма” произошла от турецкого surme ; им обозначался порошок свинцового блеска PbS , также служивший для чернения бровей (по другим данным, “сурьма» - от персидского сурме – металл).

Первая известная нам книга, в которой подробно описаны свойства сурьмы и её соединений, - “Триумфальная колесница антимония”, издана в 1604г. её автор вошел в историю химии под именем немецкого монаха-бенедиктинца Василия Валентина. Кто скрывается под этим псевдонимом, установить не удалось, но ещё в прошлом веке было доказано, что в списках монахов ордена бенедиктинцев брат Василий Валентин никогда не числился. Есть, правда, сведения, будто бы в XV веке в Эрфуртском монастыре жил монах по имени Василий, весьма сведущий в алхимии; кое-какие принадлежащие ему рукописи были найдены после его смерти в ящике вместе с порошком золота. Но отождествлять его с автором “Триумфальной колесницы антимония”, видимо, нельзя. Вероятнее всего, как показал критический анализ ряда книг Василия Валентина, они написаны разными лицами, причем не ранее второй половины XVI века.

Ещё средневековые металлурги и химики подметили, что сурьма куется хуже, чем “классические” металлы, и поэтому вместе с цинком, висмутом и мышьяком её выделили в особую группу - «полуметаллов”. Для этого имелись и другие “веские” основания: по алхимическим понятиям, каждый металл был связан с тем или иным небесным телом “Семь металлов создал свет по числу семи планет”- гласил один из важнейших постулатов алхимии. На каком-то этапе людям и впрямь были известны семь металлов и столько же небесных тел (Солнце, Луна и пять планет, не считая Земли). Не увидеть в этом глубочайшую философскую закономерность могли только полные профаны и невежды. Стройная алхимическая теория гласила, что золото представляло на небесах Солнце, серебро – это типичная Луна, медь, несомненно, связана родственными узами с Венерой, железо явно тяготеет к Марсу, ртуть соответственно Меркурию, олово олицетворяет Юпитер, а свинец – Сатурн. Для других элементов в рядах металлов не оставалось ни одной вакансии.

Если для цинка и висмута такая дискриминация, вызванная дефицитом небесных тел, была явно несправедливой, то сурьма с её своеобразными физическими и химическими свойствами и в самом деле не вправе была сетовать на то, что оказалась в разряде “полуметаллов”

Судите сами. По внешнему виду кристаллическая, или серая, сурьма (это её основная модификация) – типичный металл серо-белого цвета с легким синеватым оттенком, который тем сильнее, чем больше примесей (известны также три аморфные модификации: желтая, черная и так называемая взрывчатая). Но внешность, как известно, бывает обманчивой, и сурьма это подтверждает. В отличие от большинства металлов, она, во-первых, очень хрупка и легко истирается в порошок, а во-вторых, значительно хуже проводит электричество и тепло. Да и в химических реакциях сурьма проявляет такую двойствен-

ность, что не позволяет однозначно ответить на вопрос: металл она или не металл.

Словно в отместку металлам за то, что они неохотно принимают в свои ряды, расплавленная сурьма растворяет почти все металлы. Об этом знали ещё в старину, и не случайно во многих дошедших до нас алхимических книгах сурьму и её соединения изображали в виде волка с открытой пастью. В трактате немецкого алхимика Михаила Мейера “Бегущая Атланта”, изданном в 1618г, был помещен, например, такой рисунок: на переднем плане волк пожирает лежащего на земле царя, а на заднем плане тот царь, целый и невредимый, подходит к берегу озера, где стоит лодка, которая должна доставить его во дворец на противоположном берегу. Символически этот рисунок изображал способ очистки золота (царь) от примесей серебра и меди с помощью антимонита (волк) – природного сульфида сурьмы, а золото образовывало соединение с сурьмой, которое затем струёй воздуха – сурьма улетучивалась в виде трех окиси, и получалось чистое золото. Этот способ существовал до XVIII века.

Содержание сурьмы в земной коре 4*10 -5 весового %. Мировые запасы сурьмы, оцениваемые в 6 млн. т, сосредоточены главным образом в Китае (52% мировых запасов). Наиболее распространенный минерал – сурьмяный блеск, или стибин (антимонит) Sb 2 S 3 , свинцово-серого цвета с металлическим блеском, который кристаллизуется в ромбической системе с плотностью 4,52-4,62 г / см 3 и твердостью 2. В главной массе сурьмяный блеск образуется в гидротермальных месторождениях, где его скопления создают залежи сурьмяной руды в форме жил и пластообразных тел. В верхних частях рудных тел, близ поверхности земли, сурьмяный блеск подвергается окислению, образуя ряд минералов, а именно: сенармонтит и валентит Sb 2 O 3 ; сервантит Sb 2 O 4 ; стибиоканит Sb 2 O 4 H 2 O ; кермизит 3Sb 2 S 3 Sb 2 O . Помимо собственных сурьмяных руд имеются также руды, в которых сурьма находится в виде комплексных соединений с медью, свинцом

ртутью и цинком (блеклые руды).

Значительные месторождения сурьмяных минералов расположены в Китае, Чехии, Словакии, Боливии, Мексике, Японии, США, в ряде африканских стран. В дореволюционной России сурьму совсем не добывали, да и месторождения её были не известны (в начале XX века Россия ежегодно ввозила из-за границы почти по тысяче тонн сурьмы). Правда, ещё в 1914г, как писал в своих воспоминаниях видный советский геолог академик Д.И.Щербаков, признаки сурьмяных руд он обнаружил в Кадамджайском гребне (Киргизия). Но тогда было не до сурьмы. Геологические поиски, продолженные ученым спустя почти два десятилетка, увенчались успехом, и уже в 1934г из кадамджайских руд начали получать трехсернистую сурьму, а ещё через год на опытном заводе была выплавлена первая отечественная металлическая сурьма. Уже к 1936 году полностью отпала необходимость в покупке её за рубежом.

ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ

СВОЙСТВА.

Для сурьмы известна одна кристаллическая форма и несколько аморфных (так называемые желтая, черная и взрывчатая сурьма). При обычных условиях устойчива лишь кристаллическая сурьма; она серебристо-белого цвета с синеватым оттенком. Чистый металл при медленном охлаждение под слоем шлака образует на поверхности игольчатые кристаллы, напоминающую форму звезд. Структура кристаллов ромбоэдрическая, а=4,5064 А, а=57,1 0 .

Плотность кристаллической сурьмы 6,69 , жидкой 6,55 г / см 3 . Температура плавления 630,5 0 С, температура кипения 1635-1645 0 С, теплота плавления 9,5ккал / г-атом, теплота испарения 49,6ккал / г-атом. Удельная теплоемкость (кал / г град):0,04987(20 0); 0,0537(350 0); 0,0656(650-950 0). Тепло проводимость (кал / ем.сек.град):

0,045,(0 0); 0,038(200 0); 0,043(400 0); 0,062(650 0). Сурьма хрупка, легко истирается в порошок; вязкость (пуаз); 0,015(630,5 0); 0,082(1100 0). Твердость по Бринеллю для литой сурьмы 32,5-34кг / мм 2 , для сурьмы высокой чистоты (после зонной плавки) 26кг / мм 2 . Модуль упругости 7600кг / мм 2 , предел прочности 8,6кг / мм 2 , сжимаемости 2,43 10 -6 см 2 / кг.

Желтая сурьма получается при пропускании кислорода или воздуха в сжиженный при-90 0 сурьмянистый водород; уже при –50 0 она переходит в обыкновенную (кристаллическую) сурьму.

Черная сурьма образуется при быстром охлаждении паров сурьмы, примерно при 400 0 переходит в обыкновенную сурьму. Плотность черной сурьмы 5,3. Взрывчатая сурьма – серебристый блестящий металл с плотностью 5,64-5,97, образуется при электрическом получении сурьмы из соляно кислого раствора хлорнистой сурьмы (17-53% SbCl 2 в соляной кислоте d 1,12), при плотности тока в пределах от 0,043 до 0,2 а / дм 2 . Полученная при этом сурьма переходит в обыкновенную с взрывом, вызываемым трением, царапаньем или прикосновением нагретого металла; взрыв обусловлен экзотермическим процессом перехода одной формы в другую.

На воздухе при обычных условиях сурьма ( Sb ) не изменяется, нерастворима она ни в воде, ни в органических растворителях, но со многими металлами она легко даёт сплавы. В ряду напряжений сурьма располагается между водородом и медью. Водорода из кислот она, сурьма, не вытесняет и в разбавленных HCl и H 2 SO 4 не растворяется. Однако крепкая серная кислота при нагревании переводит сурьму в сульфаты Э 2 (SO 4) 3 . Крепкая азотная кислота окисляет сурьму до кислот H 3 ЭО 4 . Растворы щелочей сами по себе на сурьму не действуют, но в присутствии кислорода медленно её разрушают.

При нагревании на воздухе сурьма сгорает с образованием окислов, легко соединяется она также с га-

ОПРЕДЕЛЕНИЕ

Сурьма - пятьдесят первый элемент Периодической таблицы. Обозначение - Sb от латинского «stibium». Расположена в пятом периоде, VA группе. Относится к полуметаллам. Заряд ядра равен 51.

Сурьма встречается в природе в соединении с серой - в виде сурьмяного блеска]6 или антимонита, Sb 2 S 3 . Несмотря на то, что содержание сурьмы в земной коре сравнительно невелико , сурьма была известна еще в глубокой древности. Это объясняется распространенностью в природе сурьмяного блеска и легкостью получения из него сурьмы.

В свободном состоянии сурьма образует серебристо-белые кристаллы (рис. 1), обладающие металлическим блеском и имеющие плотность 6,68 г/см 3 . Напоминая по внешнему виду металл, кристаллическая сурьма отличается хрупкостью и значительно хуже проводит теплоту и электрический ток, чем обычные металлы. Кроме кристаллической сурьмы, известны и другие ее аллотропические видоизменения.

Рис. 1. Сурьма. Внешний вид.

Атомная и молекулярная масса сурьмы

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии сурьма существует в виде одноатомных молекул Sb, значения его атомной и молекулярной масс совпадают. Они равны 121,760.

Изотопы сурьмы

Известно, что в природе сурьма может находиться в виде двух стабильных изотопов 121 Sb (57,36%) и 123 Sb (42,64%). Их массовые числа равны 121 и 123 соответственно. Ядро атома изотопа сурьмы 121 Sb содержит пятьдесят один протон и семьдесят нейтронов, а изотопа 123 Sb - такое число протонов и семьдесят два нейтрона.

Существуют искусственные нестабильные изотопы сурьмы с массовыми числами от 103-х до 139-ти, а также более двадцати изомерных состояния ядер, среди которых наиболее долгоживущим является изотоп 125 Sb с периодом полураспада равным 2,76 года.

Ионы сурьмы

На внешнем энергетическом уровне атома сурьмы имеется пять электронов, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5р 3 .

В результате химического взаимодействия сурьма отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион либо принимает электроны от другого атома, т.е. является их акцептором и превращается в отрицательно заряженный ион:

Sb 0 -3e → Sb 3+ ;

Sb 0 -5e → Sb 5+ ;

Sb 0 +3e → Sb 3- .

Молекула и атом сурьмы

В свободном состоянии сурьма существует в виде одноатомных молекул Sb. Приведем некоторые свойства, характеризующие атом и молекулу сурьмы:

Сплавы сурьмы

Сурьму вводят в некоторые сплаву для придания им твердости. Сплав, состоящий из сурьмы, свинца и небольшого количества олова, называется типографским металлом, или гартом и служит для изготовления типографского шрифта. Из сплава сурьмы со свинцом (от 5 до 15% Sb) изготовляют пластины свинцовых аккумуляторов, листы и трубы для химической промышленности.

Примеры решения задач

ПРИМЕР 1

О сурьме можно рассказывать много. Это элемент с интересной историей и интересными свойствами:; элемент, используемый давно и достаточно широко; элемент, необходимый не только технике, но и общечеловеческой культуре. Историки считают, что первые производства сурьмы появились на древнем Востоке чуть ли не 5 тыс. лет назад.
В дореволюционной России не было ни одного завода, ни одного цеха, в которых бы выплавляли сурьму. А она была нужна - прежде всего полиграфии (как компонент материала для литер) и красильной промышленности, где и до сих пор применяются некоторые соединения элемента № 51. В начале XX в. Россия ежегодно ввозила из-за границы около тысячи тонн сурьмы.
В начале 30-х годов на территории Киргизской ССР, в Ферганской долине, геологи нашли сурьмяное сырье. В разведке этого месторождения принимал участие выдающийся советский ученый академик Д. И. Щербаков. В 1934 г. из руд Кадамджайского месторождения начали получать трехсернистую сурьму, а еще через год из концентратов этого месторождения на опытном заводе выплавили первую советскую металлическую сурьму. К 1936 г. производство этого вещества достигло таких масштабов, что страна полностью освободилась от необходимости ввозить его из-за рубежа.
Разработкой технологии и организацией производства советской сурьмы руководили инженеры Н. П. Сажин и С. М. Мельников, впоследствии известные ученые, лауреаты Ленинской премии.
Спустя 20 лет на Всемирной выставке в Брюсселе советская металлическая сурьма была признана лучшей в мире и утверждена мировым эталоном.

История сурьмы и ее названия

Наряду с золотом, ртутью, медью и шестью другими элементами, сурьма считается доисторической . Имя ее первооткрывателя не дошло до нас. Известно только, что,науке не известно, кто скрывается под псевдонимом «Василий Валентин». Возможно, автор книги «Триумфальная колесница антимония» изображен на этом старинном портрете. Надпись по овалу: «Брат Василий Валентин, монах ордена бенедиктинцев и философ-герметик» (т. е. алхимик)
например, в Вавилоне еще за 3 тыс. лет до н. э. из нее делали сосуды. Латинское название элемента «stibium» встречается в сочинениях Плиния Старшего. Однако греческое «axijk», от которого происходит это название, относилось первоначально не к самой сурьме, а к ее самому распространенному минералу - сурьмяному блеску.
В странах древней Европы знали только этот минерал. В середине века из него научились выплавлять «королек сурьмы», который считали полуметаллом. Крупнейший металлург средневековья Агрикола (1494-1555) писал: «Если путем сплавления определенная порция сурьмы прибавляется к свинцу, получается типографский сплав, из которого изготовляется шрифт, применяемый теми, кто печатает книги». Таким образом, одному из главных нынешних применений элемента № 51 много веков.
Свойства и способы получения сурьмы, ее препаратов и сплавов впервые в Европе подробно описаны в известной книге «Триумфальная колесница антимония», вышедшей в 1604 г. Ее автором на протяжении многих лет счищен алхимик монах-бенедиктинец Василий Валентин, живший якобы в начале ХУ в. Однако еще в прошлом веке было установлено, что среди монахов ордена бенедиктинцев такого никогда не бывало. Ученые пришли к выводу, что «Василий Валентин» - это псевдоним неизвестного ученого, написавшего свой трактат не раньше середины XVI в. ... Название «антимоний», данное им природной сернистой сурьме, немецкий историк Липман производит от греческого ocvTepov - «цветок» (по виду сростков игольчатых кристаллов сурьмяного блеска, похожих на цветы семейства сложноцветковых).


Название «антимоний» и у нас и за рубежом долгое время относилось только к этому минералу. А металлическую сурьму в то время называли корольком сурьмы - regulus antimoni. В 1789 г. Лавуазье включил сурьму в список простых веществ и дал ей название antimonie, оно и сейчас остается французским названием элемента № 51. Близки к нему английское и немецкое названия - antimony, Antimon.
Есть, правда, и другая версия. У нее меньше именитых сторонников, зато среди них создатель Швейка - Ярослав Гашек.
...В перерывах между молитвами и хозяйственными заботами настоятель Штальгаузенского монастыря в Баварии отец Леонардус искал философский камень. В одном из своих опытов он смешал в тигле пепел сожженного еретика с пеплом его кота и двойным количеством земли, взятой с места сожжения. Эту «адскую смесь» монах стал нагревать.
После упаривания получилось тяжелое темное вещество с металлическим блеском. Это было неожиданно и интересно; тем не менее отец Леонардус был раздосадован: в книге, принадлежавшей сожженному еретику, говорилось, что камень философов должен быть невесом и прозрачен... И отец Леонардус выбросил полученное вещество от греха подальше - на монастырский двор.
Спустя какое-то время он с удивлением заметил, что свиньи охотно лижут выброшенный им «камень» и при /этом быстро жиреют. И тогда отца Леонардуса осенила

Алхимики изображали сурьму и виде волка с открытой частыо гениальная идея: он решил, что открыл питательное вещество, пригодное и для людей. Он приготовил новую порцию «камня жизни», растолок его и этот порошок добавил в кашу, которой питались его тощие братья во Христе.
На следующий день все сорок монахов Штальгаузенского монастыря умерли в страшных мучениях. Раскаиваясь в содеянном, настоятель проклял свои опыты, а «камень жизни» переименовал в антимониум, то есть средство против монахов.
За достоверность деталей этой истории ручаться трудно, но именно эта версия изложена в рассказе Я. Гашека «Камень жизни».
Этимология слова «антимоний» разобрана выше довольно подробно. Остается только добавить, что русское название этого элемента - «сурьма» - происходит от турецкого «сюрме», что переводится как «натирание» или «чернение бровей». Вплоть до XIX в. в России бытовало выражение «насурьмить брови», хотя «сурьмили» их далеко не всегда соединениями сурьмы. Лишь одно из них - черная модификация трехсернистой сурьмы - применялось как краска для бровей. Его и обозначили сначала словом, которое позже стало русским наименованием элемента № 51.
А теперь давайте выясним, что же скрывается за этими названиями.

Металл или неметалл?

Средневековым металлургам и химикам были известны семь металлов: золото , серебро , медь , олово , свинец , железо и . Открытые в то время цинк , висмут и мышьяк вместе с сурьмой были выделены в специальную группу «полуметаллов»: они хуже ковались, а ковкость считалась основным признаком металла. К тому же, по алхимическим представлениям, каждый металл был связан с каким-либо небесным телом. А тел таких знали семь: Солнце (с ним связывалось золото), Луна (серебро), Меркурий (ртуть), Венера (медь), Марс (железо), Юпитер (олово) и Сатурн (свинец).
Для сурьмы небесного тела не хватило, и на этом основании алхимики никак не желали признать ее самостоятельным металлом. Но, как это ни странно, частично они были правы, что нетрудно подтвердить, проанализировав физические и химические свойства сурьмы.
Сурьма (точнее, ее самая распространенная серая модификация) выглядит как обыкновенный металл традиционного серо-белого цвета с легким синеватым оттенком. Синий оттенок тем сильнее, чем больше примесей. Металл этот умеренно тверд и исключительно хрупок: в фарфоровой ступке фарфоровым пестиком этот металл (!) нетрудно истолочь в порошок. Электричество и тепло сурьма проводит намного хуже большинства обычных металлов: при 0° С ее электропроводность составляет лишь 3,76% электропроводности серебра. Можно привести и другие характеристики - они не изменят общей противоречивой картины. Металлические свойства выражены у сурьмы довольно слабо, однако и свойства неметалла присущи ей далеко не в полной мере.
Детальный анализ химических свойств сурьмы тоже не дал возможности окончательно убрать ее из раздела «ни то, ни се». Внешний, электронный слой атома сурьмы состоит из пяти валентных электронов s2p3. Три из них (р-электроны) - неспаренные и два (s-электроны) - спаренные. Первые легче отрываются от атома и определяют характерную для сурьмы валентность 3+. При проявлении этой валентности пара цеподелепных валентных электронов s2 находится как бы в запасе. Когда же этот запас расходуется, сурьма становится пятивалентной. Короче говоря, она проявляет те же валентности, что и ее аналог по группе - неметалл фосфор.
Проследим, как ведет себя сурьма в химических реакциях с другими элементами, например с кислородом, и каков характер ее соединений.
При нагревании на воздухе сурьма легко превращается в окисел Sb 2 0 3 - твердое вещество белого цвета, почти не растворимое в воде. В литературе это вещество часто называют сурьмянистым ангидридом, но это неправильно. Ведь ангидрид является кислотообразующим окислом, а у Sb(OH) 3 , гидрата Sb 2 0 3 , основные свойства явно преобладают над кислотными. Свойства низшего окисла сурьмы говорят о том, что сурьма - металл. Но высший окисел сурьмы Sb 2 0 5 - это действительно ангидрид с четко выраженными кислотными свойствами. Значит, сурьма все-таки неметалл?


Есть еще третий окисел - Sb 2 0 4 . В нем один атом сурьмы трех-, а другой пятивалентен, и этот окисел самый устойчивый. Во взаимодействии ее с прочими элементами - та же двойственность, и вопрос, металл сурьма или неметалл, остается открытым. Почему же тогда во всех справочниках она фигурирует среди металлов? Главным образом ради классификации: надо же ее куда-то девать, а внешне она больше похожа на металл...

Зачем нужна сурьма

Металлическая сурьма из-за своей хрупкости применяется редко. Однако, поскольку сурьма увеличивает твердость других металлов (олова, свинца) и не окисляется при обычных условиях, металлурги нередко вводят ее в состав различных сплавов. Число сплавов, в которые входит элемент № 51, близко к двумстам. Наиболее известные сплавы сурьмы - твердый свинец (или гартблей), типографский металл, подшипниковые металлы.
Подшипниковые металлы - это сплавы сурьмы с оловом, свинцом и медью, к которым иногда добавляют цинк и висмут. Эти сплавы сравнительно легкоплавки, из них методом литья делают вкладыши подшипников. Наиболее распространенные сплавы этой группы - баббиты - со-держат от 4 до 15% сурьмы. Баббиты применяются в станкостроении, на железнодорожном и автомобильном транспорте. Подшипниковые металлы обладают достаточной твердостью, большим сопротивлением истиранию, высокой коррозионной стойкостью.
Сурьма принадлежит к числу немногих металлов, расширяющихся при затвердевании. Благодаря этому свойству сурьмы типографский металл - сплав свинца (82%)," олова (3%) и сурьмы (15%) - хорошо заполняет формы при изготовлении шрифтов; отлитые из этого металла строки дают четкие отпечатки. Сурьма придает типографскому металлу твердость, ударную стойкость 11 износостойкость.
Свинец, легированный сурьмой (от 5 до 15%), известен под названием гартблея, или твердого свинца. Добавка к свинцу уже 1% Sb сильно повышает его твердость. Твердый свинец используется в химическом машиностроении, а также для изготовления труб, по которым транспортируют агрессивные жидкости. Из него же делают оболочки телеграфных, телефонных и электрических кабелей, электроды, пластины аккумуляторов. Последнее, кстати,- одно из самых главных применений элемента № 51. Добавляют сурьму и к свинцу, идущему на изготовление шрапнели и пуль.


Широкое применение в технике находят соединения сурьмы. Трехсернистую сурьму используют в производстве спичек в пиротехнике. Большинство сурьмяных препаратов также получают из этого соединения. Пятисерпистую сурьму применяют для вулканизации каучука. У «медицинской» резины, в состав которой входит Sb 2 S 5 , характерный красный цвет и высокая эластичность. Жаростойкая трехокись сурьмы используется в производстве огнеупорных красок и тканей. Краска «сурьмин», основу которой составляет трехокись сурьмы, применяется для окраски подводной части и надпалубных построек кораблей.
Интерметаллические соединения сурьмы с алюминием, галлием, индием обладают полупроводниковыми свойствами. Сурьмой улучшают свойства одного из самых важных полупроводников - германия . Словом, сурьма - один из древнейших металлов, известных человечеству,- необходима ему и сегодня.
  • ХИМИЧЕСКИЙ ХИЩНИК. В средневековых книгах сурьму обозначали фигурой волка с открытой пастью. Вероятно, такой «хищный» символ этого металла объясняется тем, что сурьма растворяет («пожирает») почти все прочие металлы. На дошедшем до нас средневековом рисунке изображен волк, пожирающий царя. Зная алхимическую символику, этот рисунок следует понимать как образование сплава золота с сурьмой.
  • СУРЬМА ЦЕЛИТЕЛЬНАЯ. В XV-XVI вв. некоторые препараты сурьмы часто применяли как лекарственные средства, главным образом как отхаркивающие и рвотные. Чтобы вызвать рвоту, пациенту давали вино, выдержанное в сурьмяном сосуде. Одно из соединений сурьмы, KC 4 H 4 O 4 (SbO) Н 2 0, так и называется рвотным камнем.

Соединения сурьмы и сейчас применяются в медицине для лечения некоторых инфекционных заболеваний человека и животных. В частности, их используют при лечении сонной болезни.

  • ВЕЗДЕ, КРОМЕ СОЛНЦА. Несмотря на то что содержание сурьмы в земной коре весьма незначительно, следы ее имеются во многих минералах. Иногда сурьму обнаруживают в метеоритах. Воды моря, некоторых рек и ручьев также содержат сурьму. В спектре Солнца линии сурьмы не найдены.
  • СУРЬМА И КРАСКИ. Очень многие соединения сурьмы могут служить пигментами в красках. Так, сурьмянокислый калий (К 2 0 2Sb 2 0 5) широко применяется в производстве керамики. Мотасурьмянокислый натрий (NaSb0 3) под названием «лейконин» используется для покрытия кухонной посуды, а также в производстве эмали и белого молочного стекла. Знаменитая краска «неаполитанская желтая» есть не что иное, как сурьмянокислая окись свинца. Применяется она в живописи как масляная краска, а также для окраски керамики и фарфора. Даже металлическая сурьма, в виде очень тонкого порошка, используется как краска. Этот порошок - основа известной краски «железная чернь».
  • «СУРЬМЯНАЯ» БАКТЕРИЯ. В 1974 г. советским микробиологом Н. Н. Ляликовой обнаружена неизвестная прежде бактерия, которая питается исключительно трехокисыо сурьмы Sb 2 0 3 . При этом трехвалентная сурьма окисляется до пятивалентной. Полагают, что многие природные соединения пятивалентной сурьмы образовались при участии «сурьмяной» бактерии.
Поделиться