Технические особенности производства электроэнергии на тэс. Производство электроэнергии на тэс

Интерактивное приложение «Как работает ТЭЦ»

На картинке слева - электростанция « Мосэнерго» , где вырабатывается электроэнергия и тепло для Москвы и области. В качестве топлива используется самое экологически чистое топливо - природный газ. На ТЭЦ газ поступает по газопроводу в паровой котел. В котле газ сгорает и нагревает воду.

Чтобы газ лучше горел, в котлах установлены тягодутьевые механизмы. В котел подается воздух, который служит окислителем в процессе сгорания газа. Для снижения уровня шума механизмы снабжены шумоглушителями. Образовавшиеся при горении топлива дымовые газы отводятся в дымовую трубу и рассеиваются в атмосфере.

Раскаленный газ устремляется по газоходу и нагревает воду, проходящую по специальным трубкам котла. При нагревании вода превращается в перегретый пар, который поступает в паровую турбину. Пар поступает внутрь турбины и начинает вращать лопатки турбины, которые связаны с ротором генератора. Энергия пара превращается в механическую энергию. В генераторе механическая энергия переходит в электрическую, ротор продолжает вращаться, создавая в обмотках статора переменный электрический ток.

Через повышающий трансформатор и понижающую трансформаторную подстанцию электроэнергия по линиям электропередач поступает потребителям. Отработавший в турбине пар направляется в конденсатор, где превращается в воду и возвращается в котел. На ТЭЦ вода движется по кругу. Градирни предназначены для охлаждения воды. На ТЭЦ используются вентиляторные и башенные градирни. Вода в градирнях охлаждается атмосферным воздухом. В результате выделяется пар, который мы и видим над градирней в виде облаков. Вода в градирнях под напором поднимается вверх и водопадом падает вниз в аванкамеру, откуда поступает обратно на ТЭЦ. Для снижения капельного уноса градирни оснащены водоуловителями.

Водоснабжение осуществляется от Москвы-реки. В здании химводоочистки вода очищается от механических примесей и поступает на группы фильтров. На одних она подготавливается до уровня очищенной воды для подпитки теплосети, на других - до уровня обессоленной воды и идет на подпитку энергоблоков.

Цикл, используемый для горячего водоснабжения и теплофикации, также замкнутый. Часть пара из паровой турбины направляется в водонагреватели. Далее горячая вода направляется в тепловые пункты, где происходит теплообмен с водой, поступающей из домов.

Высококлассные специалисты « Мосэнерго» круглосуточно поддерживают процесс производства, обеспечивая огромный мегаполис электроэнергией и теплом.

Как работает парогазовый энергоблок


Выработка электричества распространенным способом происходит в результате преобразования механического усилия: вал генератора приводится в движение, что и создает электрический заряд. На электростанциях устанавливают генераторные установки, производительность которых зависит от параметров вращения и технической конструкции. Принципиально иной способ получения электрозаряда используется в солнечных панелях, которые поглощают световые лучи и преобразуют энергию солнца в напряжение.

Откуда берется электричество?

Электростанции подразделяются по источнику первичной энергии, которая участвует в производстве электроэнергии. Для этой цели человек приспособил природные силы и разработал технологии передачи энергетического потенциала горючих соединений в проводные коммуникации в виде электрического тока. На службу техническому прогрессу призваны: реки, ветер, океанские приливы и отливы, солнечный свет, а также — топливные, невозобновляемые ресурсы.

В крупных промышленных масштабах электричество получают на электростанциях следующих типов:

  • гидроэлектростанции (ГРЭС);
  • тепловые (ТЭС, в том числе, ТЭЦ — теплоэлектроцентрали);
  • атомные (АЭС или АТЭЦ).

Благодаря развитию технологий возрастает количество электростанций, использующих альтернативные источники энергии. К ним относятся приливные, ветровые, солнечные, геотермальные электрогенерирующие объекты. В отдельную категорию можно выделить комплексные автономные решения, состоящие из нескольких газотурбинных или дизельных генераторов, которые объедены для обеспечения высокой производительности.

Автономные электростанции

Генераторные комплексы автономного типа применяют для резервного электроснабжения, а также в ситуациях, когда прокладка высоковольтной ЛЭП затруднена природными условиями и оказывается нерентабельной. Необходимость установки мобильных электростанций возникает рядом с месторождениями полезных ископаемых, на производственных или строительных участках, значительно удаленных от проложенных электросетей.

Выработка электричества генераторными комплексами (производительность) зависит от количества генерирующих модулей, подключенных в единую цепь, и, по сути, ограничена только экономическими издержками. По сравнению с производством электроэнергии в крупных промышленных масштабах на АЭС, ТЭС, ГРЭС стоимость одного «дизельного» или «газотурбинного» мегавата обходится дороже. Поэтому при наличии подходящих условий инженеры-проектировщики и архитекторы производственных предприятий, населенных пунктов, жилых массивов ориентируются на подключение к подаче магистрального напряжения.

Производство электроэнергии в крупных масштабах

В двадцатом веке наибольший процент выработки электрической энергии приходился на ТЭС и ТЭЦ. С развитием атомной энергетики общемировая доля производства электроэнергии на АЭС превысила 10%. Строительство ГРЭС ограничено несколькими природными факторами, и поэтому гидроспособ преобразования используется локально, с привязкой к равнинным рекам. Полностью экологичное электричество или «зеленые мегаватты» — продукция объектов альтернативной выработки, — в 21-ом веке набирает популярность, что связано с заботой об окружающей среде и со стремлением рационально расходовать природные ресурсы.

ТЭС

Тепловые электростанции стали популярными по причине сравнительно небольших затрат для выхода на проектную мощность. Строительство ТЭС не связано с созданием плотин и монтажом ядерных реакторов. Для преобразования энергетического потенциала углеводородов в электроэнергию необходима технологическая система, состоящая из паровых котлов, паропровода и турбогенераторов. Масштабы и схемы могут быть разными, в том числе, в комбинации с теплоцентралью, но основной принцип работы ТЭС неизменен для всех случаев: тепло от сгорания через промежуточное парообразование преобразуется в электрическое напряжение.

ГРЭС

Гидроэлектростанции в отличие от тепловых не требуют топлива, удаления твердых отходов (угольные, торфяные, сланцевые ТЭС) и не загрязняют атмосферу продуктами сгорания. Но на широтах с холодными зимами и замерзающими водоемами производительность ГРЭС зависит от сезонных факторов. Затраты, вложенные в строительство плотин, окупаются продолжительное время, а уничтожение пахотных земель в результате затопления требует тщательной оценки того, насколько целесообразно возводить гидротехнические сооружения в определенном регионе.

АЭС

Атомные электростанции преобразуют энергию ядерного распада в электричество. Тепло от реактора поглощает теплоноситель первичного контура с нагревом через парогенератор воды во втором контурном цикле, откуда пар подается на генераторные турбины — и вращает их. Сложность процесса и опасность, связанная с аварийными ситуациями, ограничивают распространение данного виды выработки. Работа реактора должна контролироваться современными технологиями, а отработанное топливо — утилизироваться с соблюдением защитных мер.

К атегория: Электромонтажные работы

Производство электрической энергии

Электрическая энергия (электроэнергия) является наиболее совершенным видом энергии и используется во всех сферах и отраслях материального производства. К ее преимуществам относят - возможность передачи на большие расстояния и преобразование в другие виды энергии (механическую, тепловую, химическую, световую и др).

Электрическая энергия вырабатывается на специальных предприятиях - электрических станциях, преобразующих в электрическую другие виды энергии: химическую, топлива, энергию воды, ветра, солнца, атомную.

Возможность передачи электроэнергии на большие расстояния позволяет строить электростанции вблизи мест нахождения топлива или на многоводных реках, что является более экономичным, чем подвоз в больших количествах топлива к электростанциям, расположенным вблизи потребителей электроэнергии.

В зависимости от вида используемой энергии различают электростанции тепловые, гидравлические, атомные. Электростанции, использующие энергию ветра и теплоту солнечных лучей, представляют собой пока маломощные источники электроэнергии, не имеющие промышленного значения.

На тепловых электростанциях используется тепловая энергия, получаемая при сжигании в топках котлов твердого топлива (уголь, торф, горючие сланцы), жидкого (мазут) и газообразного (природный газ, а на металлургических заводах - доменный и коксовый газ).

Тепловая энергия превращается в механическую энергию вращением турбины, которая в генераторе, соединенном с турбиной, преобразуется в электрическую. Генератор становится источником электроэнергии. Тепловые электростанции различают по виду первичного двигателя: паровая турбина, паровая машина, двигатель внутреннего сгорания, локомобиль, газовая турбина. Кроме того, паротурбинные электростанции подразделяют на конденсационные и теплофикационные. Конденсационные станции снабжают потребителей только электрической энергией. Отработанный пар проходит цикл охлаждения и, превращаясь в конденсат, вновь подается в котел.

Снабжение потребителей тепловой и электрической энергией осуществляется теплофикационными станциями, называемыми теплоэлектроцентралями (ТЭЦ). На этих станциях тепловая энергия только частично преобразуется в электрическую, а в основном расходуется на снабжение промышленных предприятий и других потребителей, расположенных в непосредственной близости от электростанций, паром и горячей водой.

Гидроэлектростанции (ГЭС) сооружают на реках, являющихся неиссякаемым источником энергии для электростанций. Они текут с возвышенностей в низины и, следовательно, способны совершать механическую работу. На горных реках сооружают ГЭС, используя естественный напор воды. На равнинных реках напор создается искусственно сооружением плотин, вследствие разности уровней воды по обеим сторонам плотины. Первичными двигателями на ГЭС являются гидротурбины, в которых энергия потока воды преобразуется в механическую энергию.

Вода вращает рабочее колесо гидротурбины и генератор, при этом механическая энергия гидротурбины преобразуется в электрическую, вырабатываемую генератором. Сооружение ГЭС решает кроме задачи выработки электроэнергии также комплекс других задач народнохозяйственного значения - улучшение судоходства рек, орошение и обводнение засушливых земель, улучшение водоснабжения городов и промышленных предприятий.

Атомные электростанции (АЭС) относят к тепловым паротурбинным станциям, работающим не на органическом топливе, а использующим в качестве источника энергии теплоту, получаемую в процессе деления ядер атомов ядерного топлива (горючего), - урана или плутония. На АЭС роль котельных агрегатов выполняют атомные реакторы и парогенераторы.

Электроснабжение потребителей осуществляется преимущественно от электрических сетей, объединяющих ряд электростанций. Параллельная работа электрических станций на общую электрическую сеть обеспечивает рациональное распределение нагрузки между электростанциями, наиболее экономичную выработку электроэнергии, лучшее использование установленной мощности станций, повышение надежности электроснабжения потребителей и отпуска им электроэнергии с нормальными качественными показателями по частоте и напряжению.

Необходимость объединения вызвана неодинаковой нагрузкой электростанций. Спрос потребителей на электроэнергию резко изменяется не только в течение суток, но и в разные времена года. Зимой потребление электроэнергии на освещение возрастает. В сельском хозяйстве электроэнергия в больших количествах нужна летом на полевые работы и орошение.

Разница в степени загрузки станций особо ощутима при значительном отдалении районов потребления электроэнергии друг от друга в направлении с востока на запад, что объясняется разновременностью наступления часов утренних и вечерних максимумов нагрузки. Чтобы обеспечить надежность электроснабжения потребителей и полнее использовать мощность электростанций, работающих в разных режимах, их объединяют в энергетические или электрические системы с помощью электрических сетей высокого напряжения.

Совокупность электростанций, линий электропередачи и тепловых сетей, а также приемников электро- и тепло-энергии, связанных в одно целое общностью режима и непрерывностью процесса производства и потребления электрической и тепловой энергии, называют энергетической системой (энергосистемой). Электрическая система, состоящая из подстанций и линий электропередачи различных напряжений, - часть энергосистемы.

Энергосистемы отдельных районов в свою очередь соединены между собой для параллельной работы и образуют крупные системы, например единая энергетическая система (ЕЭС) европейской части СССР, объединенные системы Сибири, Казахстана, Средней Азии и др.

Теплоэлектроцентрали и заводские электростанции обычно связаны с электросетью ближайшей энергосистемы по линиям генераторного напряжения 6 и 10 кВ или линиям более высокого напряжения (35 кВ и выше) через трансформаторные подстанции. Передача энергии, выработанной мощными районными электростанциями, в электросеть для снабжения потребителей осуществляется по линиям высокого напряжения (110 кВ и выше).



- Производство электрической энергии

Тепловые электростанции подразделяют на станции:

    по виду приводного двигателя - паротурбинные, газотурбинные, с двигателями внутреннего сгорания;

    по виду топлива - с твердым органическим топливом (уголь, дрова, торф), жидким топливом (нефть, бензин, керосин, дизельное топливо), работающие на газе.

На тепловых электростанциях энергия сжигаемого топлива преобразуется в тепловую энергию, которая используется для нагрева воды в котле и образования пара. Энергия водяного пара приводит во вращение паровую турбину, соединенную с генератором.

Тепловые электростанции, в которых пар полностью используется для получения электроэнергии, называются конденсационными электростанциями (КЭС). Мощные КЭС располагаются вблизи районов добычи топлива, удалены от потребителей электроэнергии, поэтому передача электроэнергии осуществляется при высоких напряжениях (220 - 750 кВ). Строятся электростанции блоками.

В городах широко используются теплофикационные электростанции или теплоэлектроцентрали (ТЭЦ). На этих электростанциях пар, частично отработавший в турбине, используется для технологических нужд, а также для отопления и горячего водоснабжения в жилищно-коммунальном хозяйстве. Одновременное производство электрической и тепловой энергии снижает затраты на электро- и теплоснабжение по сравнению с раздельным производством электрической и тепловой энергии.

На тепловых электростанциях, для получения из воды большого количества пара под высоким давлением, используют тепло, образуемое в процессе сжигания органического топлива, такого как нефть, газ, уголь или мазут. Как понимаете, пар тут хотя и выступает теплоносителем из эпохи паровых машин, тем не менее он вполне способен вращать турбогенератор.

Пар из котла подается в турбину, с валом которого соединен генератор трехфазного переменного тока. Механическая энергия вращения турбины преобразуется в электрическую энергию генератора и передается потребителям на генераторном напряжении либо на повышенном напряжении через повышающие трансформаторы.

Давление подаваемого к турбине пара составляет порядка 23,5 МПа, при этом его температура может доходить до 560°С. А вода применяется на тепловой электростанции именно потому, что разогревается она типичным для таких станций ископаемым органическим топливом, запасы которого в недрах нашей планеты пока еще достаточно велики, хотя и дают огромный минус в виде вредных выбросов, загрязняющих окружающую среду.

Так вот, вращающийся ротор турбины сопряжен здесь с якорем турбогенератора огромной мощности (несколько мегаватт), который в конечном счете и генерирует электроэнергию на данной тепловой электростанции.

По энергоэффективности тепловые электростанции в принципе таковы, что преобразование тепла в электроэнергию осуществляется на них с КПД порядка 40%, при том очень большое количество тепла оказывается в худшем случае просто сброшенным в окружающую среду, а в лучшем - сразу же подается в системы отопления и горячего водоснабжения близлежащих потребителей. Таким образом, если высвобождаемое на электростанции тепло тут же используется для теплоснабжения, то КПД такой станции в целом достигает уже 80%, а станция называется теплоэлектроцентралью или ТЭЦ.


Самая обычная турбина генератора тепловой электростанции содержит на своем валу множество колес с лопатками, разнесенных в две отдельные группы. Пар под наиболее высоким давлением - тот, что выбрасывается из котла, он сразу попадает на проточную часть генераторной установки, где и вращает первую группу рабочих колес с лопатками. Далее этот же пар дополнительно подогревается в пароподогревателе, после чего попадает уже на вторую группу колес, работающих при давлении пара пониже.

В итоге турбина, напрямую связанная с ротором генератора, совершает 50 оборотов в секунду (с соответствующей частотой вращается и магнитное поле якоря, пересекающее обмотку статора генератора). Чтобы генератор не нагревался бы в процессе работы сверх меры, на станции реализована система охлаждения генератора, предотвращающая его перегрев.

Внутри котла тепловой электростанции установлена горелка, на которой сгорает топливо, образуя высокотемпературное пламя. К примеру, сжигаться может угольная пыль с подачей кислорода. Пламя охватывает большую площадь трубопровода сложной конфигурации с движущейся по нему водой, которая разогреваясь становится паром, вырывающимся наружу под высоким давлением.

Вырывающийся под высоким давлением водяной пар подается на лопатки турбины, передавая ей свою механическую энергию. Турбина вращается, и энергия механическая преобразуется в электрическую. Преодолев систему лопаток турбины, пар направляется в конденсатор, где попадая на трубы с холодной водой, он конденсируется, то есть снова становится жидкостью - водой. Такая тепловая электростанция называется конденсационной электростанцией (КЭС).


Теплоэлектроцентрали (ТЭЦ), в отличие от конденсационных электростанций (КЭС), содержат в своем составе систему отбора тепла у пара, после того как он прошел через турбину и уже поспособствовал выработке электроэнергии.

Пар отбирается с разными параметрами, что зависит от вида конкретной турбины, при том количество отбираемого от турбины пара также регулируется. Отобранный для получения тепла пар конденсируется в сетевых подогревателях воды, где он отдает свою энергию воде из сети, а вода насосами направляется в пиковые водогрейные котельные и тепловые пункты. Далее вода подается в систему тепломагистралей.

При необходимости отбор тепла у пара на ТЭЦ может быть полностью перекрыт, тогда теплоэлектроцентраль превратится в обычную КЭС. Таким образом ТЭЦ способна работать в одном из двух режимов: в тепловом режиме - когда приоритет на выработку тепла или в электрическом - когда приоритет электричеству, например летом.

На тепловых электростанциях химическая энергия сжигаемого топлива преобразуется в котле в энергию водяного пара, приводящего во вращение турбоагрегат (паровую турбину, соединенную с генератором). Механическая энергия вращения преобразуется генератором в электрическую. Топливом для электростанций служат уголь, торф, горючие сланцы, а также газ и мазут. В отечественной энергетике на долю КЭС приходится до 60% выработки электроэнергии.

Основными особенностями КЭС являются: удаленность от потребителей электроэнергии, что определяет в основном выдачу мощности на высоких и сверхвысоких напряжениях, и блочный принцип построения электростанции. Мощность современных КЭС обычно такова, что каждая из них может обеспечить электроэнергией крупный район страны. Отсюда еще одно название электростанций этого типа - государственная районная электрическая станция (ГРЭС).

Рис.1. Общий вид современной КЭС
1 - главный корпус, 2 - вспомогательный корпус,
3 - открытое распределительное устройство, 4 - склад топлива

Рис.2. Принципиальная технологическая схема КЭС
1 - склад топлива и система топливоподачи,
2 - система топливоприготовления, 3 - котел,
4 - турбина, 5 - конденсатор, 6 - циркуляционный насос,
7 - конденсатный насос, 8 - питательный насос,
9 - горелки котла, 10 - вентилятор, 11 - дымосос,
12 - воздухоподогреватель, 13 - водяной экономайзер,
14 - подогреватель низкого давления, 15 - деаэратор,
16 - подогреватель высокого давления.

На рис.1 показан общий вид современной КЭС, а на рис.2 - упрощенная принципиальная технологическая схема энергоблока КЭС. Энергоблок представляет собой как бы отдельную электростанцию со своим основным и вспомогательным оборудованием и центром управления - блочным щитом. Связей между соседними энергоблоками по технологическим линиям обычно не предусматривается. Построение КЭС по блочному принципу дает определенные технико-экономические преимущества, которые заключаются в следующем:

  • облегчается применение пара высоких и сверхвысоких параметров вследствие более простой системы паропроводов, что особенно важно для освоения агрегатов большой мощности;
  • упрощается и становится более четкой технологическая схема электростанции, вследствие чего увеличивается надежность работы и облегчается эксплуатация;
  • уменьшается, а в отдельных случаях может вообще отсутствовать резервное тепломеханическое оборудование;
  • сокращается объем строительных и монтажных работ; уменьшаются капитальные затраты на сооружение электростанции;
  • обеспечивается удобное расширение электростанции, причем новые энергоблоки при необходимости могут отличаться от предыдущих по своим параметрам.

Технологическая схема КЭС состоит из нескольких систем: топливоподачи; топливоприготовления; основного пароводяного контура вместе с парогенератором и турбиной; циркуляционного водоснабжения; водоподготовки; золоулавливания и золоудаления и, наконец, электрической части станции (рис.2).

Механизмы и установки, обеспечивающие нормальное функционирование всех этих элементов, входят в так называемую систему собственных нужд станции (энергоблока).

Наибольшие энергетические потери на КЭС имеют место в основном пароводяном контуре, а именно в конденсаторе, где отработавший пар, содержащий еще большое количество тепла, затраченного при парообразовании, отдает его циркуляционной воде. Тепло с циркуляционной водой уносится в водоемы, т.е. теряется. Эти потери в основном определяют КПД электростанции, составляющий даже для самых современных КЭС не более 40-42%.

Электроэнергия, вырабатываемая электростанцией, выдается на напряжении 110-750 кВ и лишь часть ее отбирается на собственные нужды через трансформатор собственных нужд, подключенный к выводам генератора.

Генераторы и повышающие трансформаторы соединяют в энергоблоки и подключают к распределительному устройству высокого напряжения, которое обычно выполняется открытым (ОРУ). Варианты расположения основных сооружений могут быть различными, что иллюстрируется рис.3.

Рис. 3. Варианты расположения основных сооружений КЭС
1 - главный корпус; 2 - склад топлива;
3 - дымовые трубы; 4 - трансформаторы блоков;
5,6 - распределительные устройства; 7 - насосные станции;
8 - промежуточные опоры электрических линий

Современные КЭС оснащаются в основном энергоблоками 200-800 МВт. Применение крупных агрегатов позволяет обеспечить быстрое наращивание мощностей электростанций, приемлемые себестоимость электроэнергии и стоимость установленного киловатта мощности станции.

Наиболее крупные КЭС в настоящее время имеют мощность до 4 млн кВт. Сооружаются электростанции мощностью 4-6,4 млн кВт с энергоблоками 500 и 800 МВт. Предельная мощность КЭС определяется условиями водоснабжения и влиянием выбросов станции на окружающую среду.

Современные КЭС весьма активно воздействуют на окружающую среду: на атмосферу, гидросферу и литосферу. Влияние на атмосферу сказывается в большом потреблении кислорода воздуха для горения топлива и в выбросе значительного количества продуктов сгорания. Это в первую очередь газообразные окислы углерода, серы, азота, ряд которых имеет высокую химическую активность. Летучая зола, прошедшая через золоуловители, загрязняет воздух. Наименьшее загрязнение атмосферы (для станций одинаковой мощности) отмечается при сжигании газа и наибольшее - при сжигании твердого топлива с низкой теплотворной способностью и высокой зольностью. Необходимо учесть также большие уносы тепла в атмосферу, а также электромагнитные поля, создаваемые электрическими установками высокого и сверхвысокого напряжения.

КЭС загрязняет гидросферу большими массами теплой воды, сбрасываемыми из конденсаторов турбин, а также промышленными стоками, хотя они проходят тщательную очистку.

Для литосферы влияние КЭС сказывается не только в том, что для работы станции извлекаются большие массы топлива, отчуждаются и застраиваются земельные угодья, но и в том, что требуется много места для захоронения больших масс золы и шлаков (при сжигании твердого топлива).

Влияние КЭС на окружающую среду чрезвычайно велико. Например, о масштабах теплового загрязнения воды и воздуха можно судить по тому, что около 60% тепла, которое получается в котле при сгорании всей массы топлива, теряется за пределами станции. Учитывая размеры производства электроэнергии на КЭС, объемы сжигаемого топлива, можно предположить, что они в состоянии влиять на климат больших районов страны. В то же время решается задача утилизации части тепловых выбросов путем отопления теплиц, создания подогревных прудовых рыбохозяйств. Золу и шлаки используют в производстве строительных материалов и т.д.

Теплофикационные электростанции - теплоэлектроцентрали (ТЭЦ)

Этот вид электростанций предназначен для централизованного снабжения промышленных предприятий и городов электроэнергией и теплом. Являясь, как и КЭС, тепловыми электростанциями, они отличаются от последних использованием тепла «отработавшего» в турбинах пара для нужд промышленного производства, а также для отопления, кондиционирования воздуха и горячего водоснабжения. При такой комбинированной выработке электроэнергии и тепла достигается значительная экономия топлива по сравнению с раздельным энергоснабжением, т.е. выработкой электроэнергии на КЭС и получением тепла от местных котельных. Поэтому ТЭЦ получили широкое распространение в районах (городах) с большим потреблением тепла и электроэнергии. В целом на ТЭЦ производится около 25% всей электроэнергии, вырабатываемой в России.

Рис.4. Особенности технологической схемы ТЭЦ
1 - сетевой насос; 2 - сетевой подогреватель

Особенности технологической схемы ТЭЦ показаны на рис.4. Части схемы, которые по своей структуре подобны таковым для КЭС, здесь не указаны. Основное отличие заключается в специфике пароводяного контура и способе выдачи электроэнергии.

Специфика электрической части ТЭЦ определяется расположением электростанции вблизи центров электрических нагрузок. В этих условиях часть мощности может выдаваться в местную сеть непосредственно на генераторном напряжении. С этой целью на электростанции создается обычно генераторное распределительное устройство (ГРУ). Избыток мощности выдается, как и в случае КЭС, в энергосистему на повышенном напряжении.

Существенной особенностью ТЭЦ является также повышенная мощность теплового оборудования по сравнению с электрической мощностью электростанции. Это обстоятельство предопределяет больший относительный расход электроэнергии на собственные нужды, чем на КЭС.

Размещение ТЭЦ преимущественно в крупных промышленных центрах, повышенная мощность теплового оборудования в сравнении с электрическим повышают требования к охране окружающей среды. Так, для уменьшения выбросов ТЭЦ целесообразно, где это возможно, использовать в первую очередь газообразное или жидкое топливо, а также высококачественные угли.

Размещение основного оборудования станций данного типа, особенно для блочных ТЭЦ, соответствует таковому для КЭС. Особенности имеют лишь те станции, у которых предусматривается большая выдача электроэнергии с генераторного распределительного устройства местному потребителю. В этом случае для ГРУ предусматривается специальное здание, размещаемое вдоль стены машинного зала (рис.5).

Рис.5. Вариант размещения основного оборудования
на площадке ТЭЦ с отдельным зданием ГРУ

1 - дымовые трубы; 2 - главный корпус; 3 - многоамперные токопроводы;
4 - здание ГРУ; 5 - трансформатор связи; 6 - ОРУ;
7 - градирни (склад топлива для ТЭЦ не показан)

Атомные электростанции (АЭС)

АЭС - это по существу тепловые электростанции, которые используют тепловую энергию ядерных реакций.

Один из основных элементов АЭС - реактор. В России, как и во многих странах мира, используют в основном ядерные реакции расщепления урана U-235 под действием тепловых нейтронов. Для их осуществления в реакторе, кроме топлива (U-235), должен быть замедлитель нейтронов и, естественно, теплоноситель, отводящий тепло из реактора. В реакторах типа ВВЭР (водо-водяной энергетический) в качестве замедлителя и теплоносителя используется обычная вода под давлением. В реакторах типа РБМК (реактор большой мощности канальный) в качестве теплоносителя используется вода, а в качестве замедлителя - графит. Оба эти реактора нашли широкое применение на АЭС в России.

Рис.6. Принципиальная технологическая схема АЭС с реактором типа ВВЭР
1 - реактор; 2 - парогенератор;
3 - турбина; 4 - генератор;

7 - конденсатный (питательный) насос;
8 - главный циркуляционный насос

Схемы АЭС в тепловой части могут выполняться в различных вариантах. На рис.6 в качестве примера представлена двухконтурная схема АЭС для электростанций с реакторами ВВЭР. Видно, что эта схема близка к схеме КЭС, однако вместо парогенератора на органическом топливе здесь используется ядерная установка.

АЭС, так же как и КЭС, строятся по блочному принципу как в тепломеханической, так и в электрической части.

Ядерное топливо, запасы которого достаточно велики, обладает очень высокой теплотворной способностью (1 кг U-235 заменяет 2900 т угля), поэтому АЭС особенно эффективны в районах, бедных топливными ресурсами, например в европейской части России.

АЭС выгодно оснащать энергоблоками большой мощности. Тогда по своим технико-экономическим показателям они не уступают КЭС, а в ряде случаев и превосходят их. В настоящее время разработаны реакторы электрической мощностью 440 и 1000 МВт типа ВВЭР, а также 1000 и 1500 МВт типа РБМК. При этом энергоблоки формируются следующим образом: реактор сочетается с двумя турбоагрегатами (реактор ВВЭР-440 и два турбоагрегата по 220 МВт, реактор 1000 МВт и два турбоагрегата по 500 МВт, реактор РБМК-1500 и два турбоагрегата по 750 МВт), или реактор сочетается с турбоагрегатом одинаковой мощности (реактор 1000 МВт и турбоагрегат 1000 МВт единичной мощности).

Рис.7. Принципиальная технологическая схема АЭС с реактором типа БН
а - принцип выполнения активной зоны реактора;
б - технологическая схема:
1 - реактор; 2 - парогенератор; 3 - турбина; 4 - генератор;
5 - трансформатор; 6 - конденсатор турбины;
7 - конденсатный (питательный) насос; 8 - теплообменник натриевых контуров;
9 - насос нерадиоактивного натрия; 10 - насос радиоактивного натрия

Перспективными являются АЭС с реакторами на быстрых нейтронах (БН), которые могут использоваться для получения тепла и электроэнергии, а также и для воспроизводства ядерного горючего. Технологическая схема энергоблока такой АЭС представлена на рис.7. Реактор типа БН имеет активную зону, где происходит ядерная реакция с выделением потока быстрых нейтронов. Эти нейтроны воздействуют на элементы из U-238, который обычно в ядерных реакциях не используется, и превращают его в плутоний Рn-239, который может быть впоследствии использован на АЭС в качестве ядерного горючего. Тепло ядерной реакции отводится жидким натрием и используется для выработки электроэнергии.

Схема АЭС с реактором БН трехконтурная, в двух из них используется жидкий натрий (в контуре реактора и промежуточном). Жидкий натрий бурно реагирует с водой и водяным паром. Поэтому, чтобы избежать при авариях контакта радиоактивного натрия первого контура с водой или водяным паром, выполняют второй (промежуточный) контур, теплоносителем в котором является нерадиоактивный натрий. Рабочим телом третьего контура является вода и водяной пар.

В настоящее время в эксплуатации находится ряд энергоблоков типа БН, из них наиболее крупный БН-600.

АЭС не имеют выбросов дымовых газов и не имеют отходов в виде золы и шлаков. Однако удельные тепловыделения в охлаждающую воду у АЭС больше, чем у ТЭС, вследствие большего удельного расхода пара, а следовательно, и больших удельных расходов охлаждающей воды. Поэтому на большинстве новых АЭС предусматривается установка градирен, в которых теплота от охлаждающей воды отводится в атмосферу.

Важной особенностью возможного воздействия АЭС на окружающую среду является необходимость захоронения радиоактивных отходов. Это делается в специальных могильниках, которые исключают возможность воздействия радиации на людей.

Чтобы избежать влияния возможных радиоактивных выбросов АЭС на людей при авариях, применены специальные меры по повышению надежности оборудования (дублирование систем безопасности и др.), а вокруг станции создается санитарно-защитная зона.

Возможное размещение основных сооружений АЭС на примере станции с блоками ВВЭР-1000 показано на рис.8.

Рис.8. Вариант размещения основных узлов АЭС с реакторами типа ВВЭР-1000
1 - помещение реактора; 2 - машинный зал; 3 - площадка трансформаторов;
4 - сбросной канал (закрытый); 5 - насосные станция;
6 - водоподводящий канал (открытый); 7 - ОРУ; 8 - щит ОРУ;
9 - объединенный вспомогательный корпус; 10 - дизель-электрическая станция;
11 - здание специальной водоподготовки; 12 - административно-бытовой комплекс

Гидроэлектростанции (ГЭС)

На ГЭС для получения электроэнергии используется энергия водных потоков (рек, водопадов и т.д.). В настоящее время на ГЭС вырабатывается около 15% всей электроэнергии. Более интенсивное строительство этого вида станций сдерживается большими капиталовложениями, большими сроками строительства и спецификой размещения гидроресурсов по территории России (большая часть их сосредоточена в восточной части страны).

В настоящее время водные ресурсы используются в основном путем строительства мощных гидроэлектростанций, таких как Красноярская ГЭС (6 млн. кВт), Братская ГЭС (4,5 млн. кВт), Саяно-Шушенская ГЭС (6,4 млн. кВт), Усть-Илимская ГЭС (4,32 млн. кВт) и др.

Первичными двигателями на ГЭС являются гидротурбины, которые приводят во вращение синхронные гидрогенераторы. Мощность, развиваемая гидроагрегатом, пропорциональна напору Н и расходу воды Q, т.е.

Таким образом, мощность ГЭС определяется расходом и напором воды.

Рис.9. Принципиальная технологическая схема ГЭС

На ГЭС, как правило, напор воды создается плотиной (рис.9). Водное пространство перед плотиной называется верхним бьефом, а ниже плотины - нижним бьефом. Разность уровней верхнего (УВБ) и нижнего бьефа (УНБ) определяет напор Н.

Верхний бьеф образует водохранилище, в котором накапливается вода, используемая по мере необходимости для выработки электроэнергии.

В состав гидроузла на равнинной реке входят: плотина, здание электростанции, водосбросные, судопропускные (шлюзы), рыбопропускные сооружения и др.

На горных реках сооружаются ГЭС, которые используют большие естественные уклоны реки Однако при этом обычно приходится создавать систему деривационны, сооружений. К ним относятся сооружения, направляющие воду в обход естественного русла реки деривационные каналы, туннели, трубы.

В электрической части ГЭС во многом подобны конденсационным электростанциям. Как и КЭС, гидроэлектростанции обычно удалены от центров потребления, так как место их строительства определяется в основном природными условиями. Поэтому электроэнергия, вырабатываемая ГЭС, выдается на высоких и сверхвысоких напряжениях (110-500 кВ). Отличительной особенностью ГЭС является небольшое потребление электроэнергии на собственные нужды, которое обычно в несколько раз меньше, чем на ТЭС. Это объясняется отсутствием на ГЭС крупных механизмов в системе собственных нужд.

При сооружении ГЭС одновременно с энергетическими решаются важные народнохозяйственные задачи: орошение земель и развитие судоходства, обеспечение водоснабжения крупных городов и промышленных предприятий и т.д.

Технология производства электроэнергии на ГЭС довольно проста и легко поддается автоматизации. Пуск агрегата ГЭС занимает не более 50с, поэтому резерв мощности в энергосистеме целесообразно обеспечить именно этими агрегатами.

Коэффициент полезного действия ГЭС обычно составляет около 85-90%.

Благодаря меньшим эксплуатационным расходам себестоимость электроэнергии на ГЭС, как правило, в несколько раз меньше, чем на тепловых электростанциях.

Рис.10. Схема ГАЭС

Особую роль в современных энергосистемах выполняют гидроаккумулирующие станции (ГАЭС). Эти электростанции имеют как минимум два бассейна - верхний и нижний с определенными перепадами высот между ними (рис.10). В здании ГАЭС устанавливаются так называемые обратимые гидроагрегаты. В часы минимума нагрузки энергосистемы генераторы ГАЭС переводят в двигательный режим, а турбины - в насосный. Потребляя мощность из сети, такие гидроагрегаты перекачивают воду по трубопроводу из нижнего бассейна в верхний В период максимальных нагрузок, когда в энергосистеме образуется дефицит генераторной мощности, ГАЭС вырабатывает электроэнергию. Срабатывая воду из верхнего бассейна, турбина вращает генератор, который выдает мощность в сеть.

Таким образом, применение ГАЭС помогает выравнивать график нагрузки энергосистемы, что повышает экономичность работы тепловых и атомных электростанций.

Воздействие ГЭС и ГАЭС на окружающую среду связано с сооружением плотин и водохранилищ. Это обстоятельство, кроме отчуждения больших площадей земли с их природными богатствами, сказывается на изменении ландшафта, уровня грунтовых вод, на переформировании берегов, увеличении испарения воды и т.д. При сооружении крупных водохранилищ ГЭС, кроме того, создаются условия для развития тектонической активности.

Размещение основных объектов, входящих в состав электростанций, показано на примере приплотинной ГЭС (рис.11).

Рис. 11. Размещение основных объектов приплотинной ГЭС
а - план:
1 - здание ГЭС; 2 - станционная бетонная плотина; 3 - бетонный водослив;
4 - право- и левобережная каменно-набросные плотины; 5 - ОРУ ВН и СВН;
б - разрез по станционной плотине:
1 - плотина; 2 - водовод;
3 - площадка электротехнического оборудования высокого напряжения;
4 - здание машинного зала ГЭС

Газотурбинные электростанции

Основу современных газотурбинных электростанций составляют газовые турбины мощностью 25-100 МВт. Упрощенная принципиальная схема энергоблока газотурбинной электростанции представлена на рис.12.

Рис.12. Принципиальная технологическая схема электростанции с газовыми турбинами
КС - камера сгорания; КП - компрессор; ГТ - газовая турбина;
G - генератор; Т - трансформатор; М - пусковой двигатель

Топливо (газ, дизельное горючее) подается в камеру сгорания, туда же компрессором нагнетается сжатый воздух. Горячие продукты сгорания отдают свою энергию газовой турбине, которая вращает компрессор и синхронный генератор. Запуск установки осуществляется при помощи разгонного двигателя и длится 1-2 мин, в связи с чем газотурбинные установки (ГТУ) отличаются высокой маневренностью и пригодны для покрытия пиков нагрузки в энергосистемах. Основная часть теплоты, получаемая в камере сгорания ГТУ, выбрасывается в атмосферу, поэтому общий КПД таких электростанций составляет 25-30%.

Для повышения экономичности газовых турбин разработаны парогазовые установки (ПГУ), В них топливо сжигается в топке парогенератора, пар из которого направляется в паровую турбину. Продукты сгорания из парогенератора, после того как они охладятся до необходимой температуры, направляются в газовую турбину. Таким образом, ПГУ имеет два электрических генератора, приводимых во вращение: один - газовой турбиной, другой - паровой турбиной.

Нетрадиционные типы электростанций

Это в первую очередь электростанции с магнитогидродинамическими генераторами (МГД-генераторами). МГД-генераторы планируется сооружать в качестве надстройки к станции типа КЭС. Они используют тепловые потенциалы в 2500-3000 К, недоступные для обычных котлов.

Рис.13. Принципиальная схема КЭС с МГД-генератором
1 - камера сгорания; 2 - МГД-канал; 3 - магнитная система;
4 - воздухоподогреватель; 5 - парогенератор (котел); 6 - паровые турбины;
7 - компрессор; 8 - конденсатный (питательный) насос

Принципиальная схема ТЭС с МГД-установкой показана на рис.13. Газообразные продукты сгорания топлива, в которые вводится легкоионизируемая присадка (например, К 2 СО 3), направляются в МГД-канал, пронизанный магнитным полем большой напряженности. Кинетическая энергия ионизированных газов в канале преобразуется в электрическую энергию постоянного тока, который, в свою очередь, преобразуется в трехфазный переменный и направляется в энергосистему потребителям.

Выхлоп МГД-канала при температуре около 2000 К направляется в котел и используется по обычной схеме на парообразование с применением энергии пара в паровой турбине ТЭС.

Вот уже много лет во многих передовых и технически развитых странах мира проводятся работы по овладению энергией термоядерного синтеза. Сущность термоядерной реакции, в которой может быть высвобождено колоссальное количество энергии, состоит в слиянии двух атомов (ионов) легких элементов (обычно ионов изотопов водорода - дейтерия и трития либо водорода и дейтерия). В результате образуется частица с массой, меньшей, чем суммарная масса исходных элементов, а высвобождающаяся энергия соответствует разности масс.

Реакция может быть осуществлена при весьма специфических условиях: температура исходного вещества должна быть около 10 8 К, т.е. оно находится в состоянии высокотемпературной плазмы; давление в плазме несколько сот мегапаскаль; время ее удержания не менее 1с. При использовании энергии реакции в промышленных целях эти условия должны создаваться циклически. Осуществить эти требования чрезвычайно сложно. В настоящее время видны два основных пути достижения поставленной цели: удержание плазмы мощным статическим магнитным полем или инерционное удержание, при котором топливо в виде малых порций нагревается и сжимается сконцентрированными лучами лазера или пучками электронов.

Рис. 14. Принципиальная схема термоядерной электростанции на базе реактора типа «Токамак»
1 - дейтерий-тритиевая плазма; 2 - вакуумное пространство;
3 - сверхпроводящий магнит; 4 - бланкет;
5 - теплообменник первого контура; 6 - теплообменник второго контура;
7 - трансформатор разогрева плазмы

Бывший СССР являлся одним из лидеров в разработке способов магнитного удержания плазмы в установках типа Токамак. Прообраз термоядерной электростанции на основе реактора этого типа показан на рис.14. Основу реактора и блока электростанции представляет тороидальная камера, по оси которой в вакууме 2 концентрируется плазма 1, где и происходит термоядерная реакция. Удержание плазмы осуществляется мощным сверхпроводящим магнитом 3, разогрев - трансформатором 7.

Рассматривается реакция дейтерий + тритий. Если дейтерий может быть выделен из природной воды, то тритий получают искусственно, что требует больших затрат энергии и труда. Чтобы воспроизвести тритий, который расходуется в процессе реакции, в камере реактора сооружается бланкет из лития 4. Литий, облученный нейтронами в процессе реакции, частично образует гелий и тритий, который может быть выделен из лития и возвращен в реактор. Так может быть осуществлено его воспроизводство.

Литий бланкета выполняет еще одну функцию - переносит тепло, образующееся при термоядерном синтезе. Будучи в жидком состоянии, он циркулирует через теплообменник 5 и отдает тепло промежуточному жидкометаллическому теплоносителю (например, калию), а тот, в свою очередь, нагревает воду в следующем теплообменнике 6, работающем подобно паровому котлу ТЭС или парогенератору АЭС. Рассмотренная схема дает лишь очень упрощенное представление об одном возможном пути создания станции такого типа.

Создание термоядерной электростанции поднимает ряд серьезных теоретических и практических проблем, требующих проведения сложных исследований, и поэтому окончательное овладение термоядерным синтезом является делом, может быть, не столь отдаленного, но все же будущего. Как показывает опыт, это одна из самых трудных технологических задач, за которую когда-либо бралось человечество. Однако в случае успеха будет обеспечено практически безграничное количество энергии.

Наряду с поисками новых мощных источников энергии ведется разработка и строительство станций на возобновляемых энергоресурсах экологически «чистого» типа, воздействие которых на окружающую среду минимально. Это станции, использующие энергию солнца, ветра, приливов и т.д.

Энергию солнца можно использовать через фотоэлементы путем прямого получения электроэнергии, или путем использования теплового излучения солнца, сфокусированного зеркалами на парогенераторе, пар из которого вращает турбину с генератором. Первый вид гелиостанций используется пока ограниченно и лишь в специальных установках, но по мере снижения стоимости и повышения отдачи фотоэлементов появится возможность широкого использования их в большой энергетике. Второй тип гелиостанций проще в реализации. Так, в СССР была построена опытно-промышленная станция мощностью 5 МВт.

Ветроэлектростанций (ВЭС) в России не получили еще распространения для удовлетворения нужд энергосистем. Они используются для сравнительно небольших автономных потребителей. Однако в пользу ВЭС говорят исследования по мощным электростанциям такого типа, выполненные в России (до нескольких десятков мегаватт в комплекте) и за рубежом (до нескольких мегаватт в единице с диаметром двухлопастного ветроколеса до 100 м).

О достоинствах приливных электростанций можно судить по факту успешной эксплуатации при высоте приливов до 13 м Кислогубской ПЭС, сооруженной на Кольском полуострове. Выявлен ряд районов России, где возможно и целесообразно сооружение ПЭС мощностью от десятков до сотен мегаватт.

Геотермальные электростанции используют энергию подземных термальных вод. В России есть районы, где можно строить ГеоТЭС (Камчатка, Кавказ и др.). Работоспособность таких станций доказана опытом их эксплуатации в США, Италии, Новой Зеландии, Мексике и других странах. На Камчатке успешно работает Паужетская ГеоТЭС.


Поделиться