Теплоемкость кремния. Кремний: характеристики, особенности и области применения

Кремний открыл и получил в 1823 году шведский химик Йенс Якоб Берцелиус.

Второй по распространённости элемент в земной коре после кислорода (27,6% по массе). Встречается в соединениях.

Строениеатома кремния в основном состоянии

1s 2 2s 2 2p 6 3s 2 3p 2


Строение атома кремния в возбуждённомсостоянии

1s 2 2s 2 2p 6 3s 1 3p 3

Степени окисления: +4, -4.

Аллотропия кремния

Известен аморфный и кристаллический кремний.


Поликристаллический кремний

Кристаллический – тёмно-серое вещество с металлическим блеском, большая твёрдость, хрупок, полупроводник; ρ = 2,33 г/см 3 , t°пл. =1415°C; t°кип. = 2680°C.

Имеет алмазоподобную структуру и образует прочные ковалентные связи. Инертен.

Аморфный - бурый порошок, гигроскопичен, алмазоподобная структура, ρ = 2 г/см 3 , более реакционноспособен.

Получение кремния

1) Промышленность – нагревание угля с песком:

2C + SiO 2 t ˚ → Si + 2CO

2) Лаборатория – нагревание песка с магнием :

2Mg + SiO 2 t ˚ → Si + 2MgO Опыт

Химические свойства

Типичный неметалл, инертен.

Как восстановитель:

1) С кислородом

Si 0 + O 2 t ˚ → Si +4 O 2

2) С фтором (без нагревания)

Si 0 + 2F 2 →SiF 4 ­

3) С углеродом

Si 0 + C t ˚ → Si +4 C

(SiC - карборунд - твёрдый; используется для точки и шлифовки)

4) С водородом не взаимодействует.

Силан (SiH 4) получают разложением силицидов металлов кислотой:

Mg 2 Si + 2H 2 SO 4 → SiH 4 ­ + 2MgSO 4

5) С кислотами не реагирует олько с плавиковой кислотой Si +4 HF = SiF 4 +2 H 2 )

Растворяется только в смеси азотной и плавиковой кислот:

3Si + 4HNO 3 + 18HF →3H 2 + 4NO­ + 8H 2 O

6) Со щелочами (при нагревании):

Как окислитель:

7) С металлами (образуются силициды):

Si 0 + 2Mg t ˚ →Mg 2 Si -4

Кремний широко используется в электронике как полупроводник. Добавки кремния к сплавам повышают их коррозионную стойкость. Силикаты, алюмосиликаты и кремнезем – основное сырье для производства стекла и керамики, а также для строительной промышленности.
Кремний в технике
Применение кремния и его соединений

Силан - SiH 4

Физические свойства: Бесцветный газ, ядовит, t°пл. = -185°C, t°кип. = -112°C.

Получение кремниевой кислоты

Действие сильных кислот на силикаты - Na 2 SiO 3 + 2HCl → 2NaCl + H 2 SiO 3 ↓

Химические свойства:

При нагревании разлагается: H 2 SiO 3 t ˚ → H 2 O + SiO 2

Соли кремниевой кислоты - силикаты .

1) с кислотами

Na 2 SiO 3 +H 2 O+CO 2 =Na 2 CO 3 +H 2 SiO 3


2) с солями

Na 2 SiO 3 +CaCl 2 =2NaCl+CaSiO 3 ↓

3) Силикаты, входящие в состав минералов, в природных условиях разрушаются под действием воды и оксида углерода (IV) - выветривание горных пород:

(K 2 O Al 2 O 3 6SiO 2)(полевой шпат) + CO 2 + 2H 2 O → (Al 2 O 3 2SiO 2 2H 2 O)(каолинит (глина)) + 4SiO 2 (кремнезём (песок)) + K 2 CO 3


Применение соединений кремния



Природные соединения кремния - песок (SiO 2) и силикаты используются для производства керамики, стекла и цемента.


Керамика

Фарфор = каолин+ глина + кварц + полевой шпат. Родина фарфора – Китай, где фарфор известен уже в 220г. В 1746 г – налажено производство фарфора в России

Фаянс - от названия итальянского города Фаэнца. Где в 14-15веках было развито керамическое ремесленничество. Фаянс – отличается от фарфора большим содержанием глины (85%), более низкой температурой обжига.

Со всеми, как говорится, вытекающими отсюда последствиями. Очевидно, с этих точек зрения и стоит рассматривать кремний - достаточно обыкновенный и достаточно необыкновенный элемент .

Природные соединения кремния

«Показывают мне, - писал в одной из своих популярных книг академик А. Е. Ферсман, - самые разнообразные предметы: прозрачный шар, сверкающий на солнце чистотой холодной ключевой воды, красивый, пестрого рисунка агат , яркой игры многоцветный опал , чистый песок на берегу моря, тонкую, как шелковинка, нитку из плавленого кварца или жароупорную посуду из него, красиво ограненные груды горного хрусталя , таинственный рисунок фантастической яшмы , окаменелое дерево, превращенное в камень, грубо обработанный наконечник стрелы древнего человека... все это одно и то же химическое соединение элементов кремния и кислорода».

Как ни разнообразен этот перечень, он, конечно, не исчерпывает многообразия природных соединений кремния. Начнем, однако, с упомянутых. «Грубо обработанный наконечник стрелы древнего человека» был сработан из кремня. А что такое кремень? Современный человек видел эти наконечники, равно, как и кремневые ружья, разве только в историческом музее. «Кремни», вставляемые в зажигалки курильщиков, ни внешне, ни по составу нимало не похожи на те кремни. Впрочем, многие из нас в детстве высекали искры, ударяя камешком о камешек, и скорее всего, тогда в наших руках были настоящие кремни.

Так что такое кремень? Химик на этот вопрос ответит буквально по Ферсману: двуокись кремния, кремнезем. Возможно, при этом добавит, что кремнезем кремня - аморфный, в отличие от кристаллического кремнезема кварцевого песка и горного хрусталя, и что часть химиков считает кремень кристаллогидратом mSiO 2 -nH 2 O.

Геолог на тот же вопрос ответит иначе, но тоже в общем-то буднично: минеральное образование, распространенное и мало интересное, пласты и «желваки» кремня обычно залегают среди известняков и меловых отложений...

И лишь гуманитарий-историк отзовется, должен отозваться, о кремне восторженно, ибо именно кремень - невзрачный и не очень прочный камень - помог в свое время человеку стать Человеком. Каменный век - век кремневых орудий труда. Причиной тому не только и не столько распространенность и доступность кремня, сколько способность его при сколе образовывать острые режущие кромки.

Обратимся теперь к кристаллическим аналогам кремня: «красиво ограненные груды горного хрусталя», «чистый песок на берегу моря»... Разница между ними небольшая, по существу лишь в размерах и примесях. Чистый песок - чистая кристаллическая двуокись кремния. Чистой воды горный хрусталь - то же самое. И что еще очень важно, оба эти вещества - полимеры, неорганические полимеры.

Одним из первых предположение о полимерном строении двуокиси кремния высказал Дмитрий Иванович Менделеев. Именно этим обстоятельством объяснял он нелетучесть и тугоплавкость веществ состава SiO 2 или, правильнее, (SiO 2)n. Рентгеноструктурные исследования наших дней подтвердили правильность этой догадки. Установлено, что кристаллический кремнезем представляет собой трехмерный сетчатый полимер. Цепочка кремнекислородных тетраэдров очень прочна, связь кремния с кислородом намного прочнее, чем, например, связь между атомами углерода в цепях органических полимеров. Кремнекислородным цепям хватает и гибкости, но в мире минералов они образуют жесткие сплетения в виде пространственных решеток и сеток, которые хрупки, неподатливы при механической обработке. Чтобы кремнекислородные цепочки остались гибкими, эластичными, их нужно изолировать одну от другой, окружить другими атомами или группами атомов. Это сделали химики, синтезировавшие многочисленные ныне кремнийорганические полимеры, речь о которых ниже. Впрочем, и природа дала великолепный образец волокнистого по структуре полимерного соединения кислорода и кремния - это асбест.

Сегодня очень непросто ответить на детский вопрос, какая из разновидностей кристаллической двуокиси кремния - песок или горный хрусталь - важнее для современного человека. Если брать в расчет только природный горный хрусталь, запасы которого практически исчерпаны, то ответ однозначен: конечно, песок. Из кварцевого песка делают кварцевое стекло, а из него - превосходную лабораторную посуду, баллоны ламп специального назначения и многое другое. Горный же хрусталь - не только поделочный материал, он и пьезоэлектрик. Он нужен радиотехнике во все возрастающих количествах, и вряд ли возможно было бы быстрое развитие этой отрасли, если бы люди не научились выращивать крупнокристаллический искусственный кварц в виде монокристаллов.

В 30-х годах Александр Евгеньевич Ферсман писал: «Через несколько десятков лет геологи не будут больше с опасностью для жизни взбираться на вершины Альп, Урала или Кавказа в погоне за кристаллами, не будут добывать их в безводных пустынях Южной Бразилии или в наносах Мадагаскара. Я уверен, что мы будем по телефону заказывать нужные куски кварца на государственном кварцевом заводе». Кварцевые заводы появились даже раньше, чем предсказывал ученый. Они выпускают кристаллы кварца, ничем не уступающие природному горному хрусталю, в количествах, достаточных не только для радиоэлектронной промышленности, не только для оптики, но и для украшений. Сомневающимся в этом утверждении рекомендуем обратиться в ближайший от их дома ювелирный магазин.

Мы умышленно ограничили рассказ о природных соединениях кремния тремя веществами и одним, по существу, соединением. Обо всем в коротком очерке все равно не расскажешь, а соединения с кислородом - самые важные. Вернемся, однако, собственно к кремнию.

Несмотря на распространенность в природе, этот элемент открыли сравнительно поздно. В 1825 г. выдающийся шведский химик и минералог Йенс Якоб Берцелиус сумел в двух реакциях выделить не очень чистый аморфный кремний в виде коричневого порошка. Для этого он восстановил металлическим калием газообразное вещество, известное ныне как тетрафторид кремния SiF 4 , и кроме того, провел такую реакцию:

K 2 SiF 6 + 4K → 6KF + Si.

Новый элемент был назван силицием (от латинского silex - кремень). Русское название этого элемента появилось спустя девять лет, в 1834 г., и благополучно дожило, в отличие, скажем, от «буротвора», до наших дней.

Кремний, как и углерод, образует различные аллотропические модификации. Кристаллический кремний так же мало похож на аморфный, как алмаз на графит . Это твердое вещество серостального цвета с металлическим блеском и гранецентрированной кристаллической решеткой того же типа, что у алмаза. Впрочем, аморфный кремний, как выяснилось, тоже не аморфный, а мелкокристаллический.

Первый промышленный способ производства кремния, изобретенный во второй половине XIX в. известным русским химиком Н. Н. Бекетовым, основан на восстановлении четыреххлористого кремния SiCl 4 парообразным цинком . Технически чистый кремний (95-98% Si) сейчас получают главным образом восстановлением кремнезема в электрической дуге между графитовыми электродами. Используется до сих пор изобретенный еще в прошлом веке способ восстановления кремнезема коксом в электрических печах. Этот способ также дает технический кремний, нужный металлургии как раскислитель, связывающий и удаляющий из металла кислород, и как легирующая добавка, повышающая прочность и коррозионную стойкость сталей и многих сплавов на основе цветных металлов. Впрочем, здесь важно «не переборщить»: избыток кремния может привести к хрупкости.

Не отошел в прошлое и бекетовский способ получения кремния (в реакции между парами цинка и тетрахлоридом кремния - летучей бесцветной жидкостью с температурой кипения всего 57,6°С). Это один из способов получения высокочистого полупроводникового кремния.

Полагают, что при абсолютном нуле идеально чистый и идеально правильный монокристаллический кремний должен быть идеальным электроизолятором. Но идеальная чистота так же недостижима, как и абсолютный нуль. В нашем случае это, что называется, к добру. Не идеальный, а просто высокочистый и сверхчистый кремний стал важнейшим полупроводниковым материалом. При температуре, отличной от абсолютного нуля, в нем возникает собственная проводимость, причем носителями электрического тока являются не только свободные электроны, но и так называемые дырки - места, покинутые электронами.

Вводя в сверхчистый кремний те или иные легирующие добавки (в микроколичествах; обычно это делается с помощью ионно-лучевых установок), в нем создают проводимость того или иного типа. Добавки элементов третьей группы менделеевской таблицы ведут к созданию дырочной проводимости, а пятой - электронной. Что значат для нас сегодня полупроводники, объяснять, вероятно, излишне. Расскажем лучше вкратце о способах получения полупроводникового кремния.

Один из этих способов упомянут выше. Заметим только, что реакцию высокочистых паров цинка с очень чистым четыреххлористым кремнием проводят при температуре 950°С в трубчатом реакторе, изготовленном из плавленого кварца. Элементный кремний образуется в виде игольчатых кристаллов, которые потом измельчают и промывают соляной кислотой, разумеется, тоже весьма чистой. Затем следует еще одна ступень очистки - зонная плавка, и лишь после нее поликристаллическую кремниевую массу превращают в монокристаллы.

Есть и другие реакции, в которых получают высокочистый полупроводниковый кремний. Это восстановление водородом трихлорсилана SiHCl 3 или четыреххлористого кремния SiCl 4 и термическое разложение моносилана, гидрида кремния SiH 4 или тетраиодида SiJ 4 . В последнем случае разложение соединения происходит на разогретой до 1000°С танталовой ленте. Дополнительная очистка зонной плавкой следует после каждой из этих реакций. В полупроводниковом кремнии содержание примесей крайне мало - 10-5-10-6% и даже меньше.

Кремнийорганика

Первое органическое соединение, содержащее кремний, было получено еще в 1845 г. в реакции этилового спирта с четыреххлористым кремнием: SiCl 4 + 4C 2 H 5 OH → Si(OC 2 H 5) 4 + 4HCl. Но это не был первый синтез кремнийорганического соединения в том смысле, какой вкладывает в это понятие современная химическая номенклатура. Кремнийорганическими сейчас признают лишь те соединения, в которых есть связь углерод - кремний. Так что первое кремнийорганическое соединение - тетраэтилсилиций Si (C 2 H 5) 4 - было получено лишь в 1863 г.

Конечно, в то время никто не предполагал, что спустя 100 лет кремнийорганика разовьется в самостоятельную и важную ветвь химической науки, что кремнийорганические соединения, особенно полимерные, станут первостепенно важны для многих видов промышленности, для транспорта и строительства, даже для быта.

Опытная хозяйка перед стиркой смажет руки силиконовым кремом, который предохранит их не только от воды, но и от разъедающего действия соды или стирального порошка. Сдавая в чистку платье или костюм, мы охотно доплачиваем за несминаемую складку и за «пропитку», благодаря которой платье будет меньше грязниться. И в том и в другом случае нашу одежду на фабрике химической чистки обработают кремнийорганическими жидкостями...

Этот же раздел химической науки подарил нам самые теплостойкие и в то же время самые морозостойкие синтетические каучуки. Температурный интервал работоспособности кремнийорганических каучуков от - 80 до +260°С, и эти каучуки уже давно существуют не в виде экзотических лабораторных образцов, а в виде массовой промышленной продукции.

Для современной электротехники очень важны кремнийорганические лаки, представляющие собой растворы кремнийорганических полимеров. Они обладают отличными электроизоляционными свойствами, устойчивы к атмосферным воздействиям, перепадам температур, солнечной радиации. Вот лишь один пример эффективности подобных материалов в технике. До внедрения кремнийорганических лаков изоляция электродвигателя врубовой машины в условиях шахты служила в среднем 5 месяцев. Когда в качестве изоляции стали применять кремнийорганический лак, срок службы двигателя до первого ремонта вырос до 3 лет.

Подобных примеров можно привести десятки, и число их будет множиться с каждым годом: появляются новые вещества, в состав которых наряду с кремнием и традиционными элементами органического мира входят алюминий , титан и другие металлы. Каждый привносит в молекулу что-то свое, и на каком-то этапе количество переходит в качество.

Кремний в микроорганизмах

Многие известные ученые работали и продолжают работать в этой области химии. Советскую школу кремнийоргаников основал академик К. А. Андрианов, который еще в 1937 г. получил первые в мире кремнийорганические полимеры - полиорганосилоксаны.

В обзорной статье о кремнии, написанной еще лет десять назад, такой раздел был бы необязателен. Слишком мало знала наука о роли кремния в жизни высших животных и человека. Известно было, что кремний (его двуокись) составляет основу скелетов у некоторых морских организмов - радиолярий , диатомей , некоторых губок, морских звезд . Известно также, что он нужен растениям : от злаков и осоки до пальм и бамбука. Чем жестче стебель растения, тем больше в его золе находят кремния. Растения, как и морские животные, берут кремний из воды. И в пресной, и в соленой воде растворено около 3 мг/л кремния (в виде кремниевых кислот и их солей). Роль же кремния в жизни высших животных и человека долгое время оставалась неясной. Было широко распространено мнение о биологической инертности и бесполезности соединений кремния.

Но, с другой стороны, давно известно серьезное заболевание - силикоз, вызываемое длительным вдыханием пыли, содержащей свободную двуокись кремния. Некоторые кремнийорганические соединения - арилсилатроны оказались токсичными для всех теплокровных животных. И в то же время известно, что в человеческом организме кремний есть практически повсеместно, больше всего - в костях, коже, соединительной ткани, а также в некоторых железах. При переломах костей содержание кремния в месте перелома возрастает почти в 50 раз. Минеральные воды с высоким содержанием кремния (например, известная кавказская вода «Джермук») оказывают благотворное влияние на здоровье людей, особенно пожилых.

Нельзя сказать, что роль кремния в жизни выяснена уже окончательно - скорее, наоборот: появление новой информации все больше осложняет картину. Синтезом и исследованием биологически активных соединений кремния сейчас заняты во многих лабораториях мира. Очень активно работают над комплексом проблем, который кратко можно назвать так же, как названа эта глава, т. е. кремний и жизнь, сотрудники Иркутского института органической химии во главе с членом-корреспондентом Академии наук СССР М. Г. Воронковым. В одной из своих статей он писал: «Уже имеющиеся многочисленные наблюдения позволяют прийти к заключению о необходимости широких и тщательных исследований (в том числе на молекулярном уровне) роли кремния в живых организмах и изыскания возможностей использовать соединения этого элемента для лечения и профилактики различных заболеваний и травм, а также для борьбы со старением». Пояснения здесь, наверное, требует лишь последний тезис. Дело в том, что установлены возрастные особенности кремниевого обмена в организме: с возрастом содержание этого элемента в костной ткани, артериях, коже существенно уменьшается...

Этот раздел наших знаний об элементе № 14 еще не стал сводом общепринятых, устоявшихся истин. Но, очевидно, именно здесь проходит в наши дни передний край борьбы за познание кремния - ближайшего аналога углерода, жизненно важного элемента.

Кремний в свободном виде был выделен в 1811 Ж.Гей-Люссаком и Л.Тенаром при пропускании паров фторида кремния над металлическим калием, однако он не был описан ими как элемент. Шведский химик Й.Берцелиус в 1823 дал описание кремния, полученного им при обработке калиевой соли K 2 SiF 6 металлическим калием при высокой температуре. Новому элементу было дано название "силиций" (от лат. silex - кремень). Русское название "кремний" введено в 1834 году российским химиком Германом Ивановичем Гессом. В переводе c др.-греч. krhmnoz - "утес, гора".

Нахождение в природе, получение:

В природе кремний находится в виде диоксида и силикатов различного состава. Природный диоксид кремния встречается преимущественно в форме кварца, хотя существуют и другие минералы - кристобалит, тридимит, китит, коусит. Аморфный кремнезем встречается в диатомовых отложениях на дне морей и океанов - эти отложения образовались из SiO 2 , входившего в состав диатомовых водорослей и некоторых инфузорий.
Свободный кремний может быть получен прокаливанием с магнием мелкого белого песка, который по химическому составу является почти чистым оксидом кремния, SiO 2 +2Mg=2MgO+Si. В промышленности кремний технической чистоты получают, восстанавливая расплав SiO 2 коксом при температуре около 1800°C в дуговых печах. Чистота полученного таким образом кремния может достигать 99,9% (основные примеси - углерод, металлы).

Физические свойства:

Аморфный кремний имеет вид бурого порошка, плотность которого равна 2.0г/см 3 . Кристаллический кремний - темно-серое, блестящее кристаллическое вещество, хрупкое и очень твердое, кристаллизуется в решетке алмаза. Это типичный полупроводник (проводит электричество лучше, чем изолятор типа каучука, и хуже проводника - меди). Кремний хрупок, только при нагревании выше 800 °C он становится пластичным веществом. Интересно, что кремний прозрачен к инфракрасному излучению, начиная с длины волны 1.1 микрометр.

Химические свойства:

Химически кремний малоактивен. При комнатной температуре реагирует только с газообразным фтором, при этом образуется летучий тетрафторид кремния SiF 4 . При нагревании до температуры 400-500 °C кремний реагирует с кислородом с образованием диоксида, с хлором, бромом и иодом - с образованием соответствующих легко летучих тетрагалогенидов SiHal 4 . При температуре около 1000°C кремний реагирует с азотом образуя нитрид Si 3 N 4 , с бором - термически и химически стойкие бориды SiB 3 , SiB 6 и SiB 12 . С водородом кремний непосредственно не реагирует.
Для травления кремния наиболее широко используют смесь плавиковой и азотной кислот.
Кремний растворяется в горячих растворах щелочей: Si + 2KOH + H 2 O = K 2 SiO 3 + 2H 2
Для кремния характерны соединения со степенью окисления +4 или -4.

Важнейшие соединения:

Диоксид кремния, SiO 2 - (кремниевый ангидрид), бесцв. крист. вещество, тугоплавкое (1720 С), с высокой твердостью. Кислотный оксид, химически малоактивен, взаимодействует с плавиковой кислотой и растворами щелочей, образуя в последнем случае соли кремниевых кислот - силикаты. Силикаты также образуются при сплавлении оксида кремния с щелочами, основными оксидами и некоторыми солями
SiO 2 + 4NaOH = Na 4 SiO 4 + 2H 2 O; SiO 2 + CaO = CaSiO 3 ;
Na 2 CO 3 + CaCO 3 + 6SiO 2 = Na 2 CaSi 6 O 14 + 2CO 2 (смешанный силикат натрия-кальция, стекло)
Кремниевые кислоты - слабые, нерастворимые, образуются при добавлении кислоты в раствор силиката в виде геля (желатинообразное вещество). H 4 SiO 4 (ортокремниевая) и H 2 SiO 3 (метакремниевая, или кремниевая) существуют только в растворе и необратимо превращаются в SiO 2 при нагревании и высушивании. Получающийся твердый пористый продукт - силикагель , имеет развитую поверхность и используется как адсорбент газов, осушитель, катализатор и носитель катализаторов.
Силикаты - соли кремниевых кислот в большинстве своем (кроме силикатов натрия и калия) нерастворимы в воде. Растворимые силикаты в растворе подвергаются сильному гидролизу.
Водородные соединения - аналоги углеводородов, силаны , соединения, в которых атомы кремния соединены одинарной связью, силены , если атомы кремния соединены двойной связью. Подобно углеводородам эти соединения образуют цепи и кольца. Все силаны могут самовозгораться, образуют взрывчатые смеси с воздухом и легко реагируют с водой: SiH 4 + 2H 2 O = SiO 2 +4H 2
Тетрафторид кремния SiF 4 , газ с неприятным запахом, ядовит, образуется при действии фтороводородной (плавиковой) кислоты на кремний и многие его соединения, в том числе и на стекло:
Na 2 SiO 3 + 6HF = 2NaF + SiF 4 ­ + 3H 2 O
Реагирует с водой, образуя кремниевую и гексафторокремниевую (H 2 SiF 6) кислоты:
3SiF 4 + 3H 2 O = 2H 2 SiF 6 + H 2 SiO 2
H 2 SiF 6 по силе близка к серной кислоте, соли - фторсиликаты.

Применение:

Наибольшее применение кремний находит в производстве сплавов для придания прочности алюминию, меди и магнию и для получения ферросилицидов, имеющих важное значение в производстве сталей и полупроводниковой техники. Кристаллы кремния применяют в солнечных батареях и полупроводниковых устройствах - транзисторах и диодах. Кремний служит также сырьем для производства кремнийорганических соединений, или силоксанов, получаемых в виде масел, смазок, пластмасс и синтетических каучуков. Неорганические соединения кремния используют в технологии керамики и стекла, как изоляционный материал и пьезокристаллы

Для некоторых организмов кремний является важным биогенным элементом. Он входит в состав опорных образований у растений и скелетных - у животных. В больших количествах кремний концентрируют морские организмы - диатомовые водоросли, радиолярии, губки. Большие количества кремния концентрируют хвощи и злаки, в первую очередь - подсемейства Бамбуков и Рисовидных, в том числе - рис посевной. Мышечная ткань человека содержит (1-2)·10 -2 % кремния, костная ткань - 17·10 -4 %, кровь - 3,9 мг/л. С пищей в организм человека ежедневно поступает до 1 г кремния.

Антонов С.М., Томилин К.Г.
ХФ ТюмГУ, 571 группа.

Источники: Кремний. Википедия ; Кремний в Онлайн Энциклопедии "Кругосвет" , ;
Кремний на сайте

Кремний (Si) - второй по распространённости в земной коре неметалл после кислорода. В природе находится в составе соединений, в чистом виде встречается редко. Строение атома кремния определяет свойства элемента.

Строение

Кремний - 14 элемент периодической таблицы Менделеева, расположенный в третьем периоде, в IV группе. Относительная атомная масса - 28.

Рис. 1. Положение в таблице Менделеева.

Ядро атома кремния содержит 14 протонов и 14 нейронов и имеет положительный заряд +14. Вокруг ядра располагается три электронные оболочки, на которых находится 14 электронов. Внешний энергетический уровень занимают четыре электрона, определяющие валентность элемента. Кремний проявляет степень окисления +2, потому что 3р-уровень имеет два неспаренных электрона. Элемент может переходить в возбуждённое состояние за счёт вакантной 3d-орбитали, проявляя степень окисления +4.

Рис. 2. Строение атома.

Схема строения атома кремния - 1s 2 2s 2 2p 6 3s 2 3p 2 или +14 Si) 2) 8) 4 .

Физические свойства

Кремний - твёрдый тёмно-серый элемент с металлическим блеском. Является полупроводником. Имеет одну модификацию, схожую по структуре с аллотропной модификацией углерода - алмазом. Однако связи между атомами кремния не такие прочные, как между атомами углерода.

Рис. 3. Кремний.

Кремний встречается в природе в составе песка, глины, кварца, силикатов. Диоксид кремния (SiO 2) - песок. Получают кремний путём прокаливания песка с углеродом (углём) или металлами:

  • 2C + SiO 2 t˚→ Si + 2CO;
  • 3SiO 2 + 4Al → 3Si + 2Al 2 O 3 ;
  • 2Mg + SiO 2 t˚→ Si + 2MgO.

Кремний используют для производства радиоэлементов, фотоэлементов, при производстве жароупорных материалов.

Химические свойства

Благодаря электронному строению кремний способен реагировать с другими элементами, принимая или отдавая электроны. В реакциях с металлами выступает в роли восстановителя, с неметаллами - окислителя. При оптимальных условиях кремний реагирует только с фтором:

Si + 2F 2 → SiF 4 .

При нагревании реагирует:

  • с кислородом (600°C) - Si + O 2 → SiO 2 ;
  • с хлором (400°C) - Si + 2Cl 2 → SiCl 4 ;
  • с углеродом (2000°C) - Si + C → SiC;
  • с азотом (1000°C) - 3Si + 2N 2 → Si 3 N 4 .

Является окислителем в реакциях с металлами:

Si + 2Mg → Mg 2 Si.

Может реагировать с концентрированными щелочами с выделением водорода:

Si + 2NaOH + H 2 O → Na 2 SiO 3 + 2H 2 .

Кремний не реагирует непосредственно с водородом и кислотами, кроме плавиковой кислоты HF: Si + 6HF → H 2 + 2H 2 или Si + 4HF → SiF 4 + 2H 2 . Соединение с водородом - силан (SiH 4) - получают разложением соли кислотой - Mg 2 Si + 2H 2 SO 4 → SiH 4 - + 2MgSO 4 .

Что мы узнали?

Кремний - неметалл четвёртой группы периодической системы. На внешнем энергетическом уровне атома располагается четыре электрона. Имеет степень окисления +2. В природе находится в соединениях в виде глины, песка, кварца и других веществ. Существует только одна модификация кремния, схожая с алмазом. Получают кремний путём нагревания песка с углём или металлами. Реагирует элемент с неметаллами, металлами и щелочами. С водородом и кислотами (исключение - HF) не реагирует.

Содержание статьи

КРЕМНИЙ, Si (silicium), химический элемент IVA подгруппы (C, Si, Ge, Sn и Pb) периодической системы элементов, неметалл. Кремний в свободном виде был выделен в 1811 Ж.Гей-Люссаком и Л.Тенаром при пропускании паров фторида кремния над металлическим калием, однако он не был описан ими как элемент. Шведский химик Й.Берцелиус в 1823 дал описание кремния, полученного им при обработке калиевой соли K 2 SiF 6 металлическим калием при высокой температуре, однако лишь в 1854 кремний был получен в кристаллической форме А.Девилем. Кремний – второй по распространенности (после кислорода) элемент в земной коре, где он составляет более 25% (масс.). Встречается в природе в основном в виде песка, или кремнезема, который представляет собой диоксид кремния, и в виде силикатов (полевые шпаты M (M = Na, K, Ba), каолинит Al 4 (OH) 8 , слюды). Кремний можно получить прокаливанием измельченного песка с алюминием или магнием; в последнем случае его отделяют от образующегося MgO растворением оксида магния в соляной кислоте. Технический кремний получают в больших количествах в электрических печах путем восстановления кремнезема углем или коксом. Полупроводниковый кремний получают восстановлением SiCl 4 или SiHCl 3 водородом с последующим разложением образующегося SiH 4 при 400–600° С. Высокочистый кремний получают выращиванием монокристалла из расплава полупроводникового кремния по методу Чохральского или методом бестигельной зонной плавки кремниевых стержней . Элементный кремний получают в основном для полупроводниковой техники, в остальных случаях он используется как легирующая добавка в производстве сталей и сплавов цветных металлов (например, для получения ферросилиция FeSi, который образуется при прокаливании смеси песка, кокса и оксида железа в электрической печи и применяется как раскислитель и легирующая добавка в производстве сталей и как восстановитель в производстве ферросплавов).

Применение.

Наибольшее применение кремний находит в производстве сплавов для придания прочности алюминию, меди и магнию и для получения ферросилицидов, имеющих важное значение в производстве сталей и полупроводниковой техники. Кристаллы кремния применяют в солнечных батареях и полупроводниковых устройствах – транзисторах и диодах. Кремний служит также сырьем для производства кремнийорганических соединений, или силоксанов, получаемых в виде масел, смазок, пластмасс и синтетических каучуков. Неорганические соединения кремния используют в технологии керамики и стекла, как изоляционный материал и пьезокристаллы.

СВОЙСТВА КРЕМНИЯ

Атомный номер 14
Атомная масса 28,086
Изотопы
стабильные 28, 29, 30
нестабильные 25, 26, 27, 31, 32, 33
Температура плавления, °С 1410
Температура кипения, °С 2355
Плотность, г/см 3 2,33
Твердость (по Моосу) 7,0
Содержание в земной коре, % (масс.) 27,72
Степени окисления –4, +2, +4

Свойства.

Кремний – темносерое, блестящее кристаллическое вещество, хрупкое и очень твердое, кристаллизуется в решетке алмаза. Это типичный полупроводник (проводит электричество лучше, чем изолятор типа каучука, и хуже проводника – меди). При высокой температуре кремний весьма реакционноспособен и взаимодействует с большинством элементов, образуя силициды, например силицид магния Mg 2 Si, и другие соединения, например SiO 2 (диоксид кремния), SiF 4 (тетрафторид кремния) и SiC (карбид кремния, карборунд). Кремний растворяется в горячем растворе щелочи с выделением водорода: Si + NaOH ® Na 4 SiO 4 + 2H 2 ­ . 4 (тетрахлорид кремния) получают из SiO 2 и CCl 4 при высокой температуре; это бесцветная жидкость, кипящая при 58° С, легко гидролизуется, образуя хлороводородную (соляную) кислоту HCl и ортокремниевую кислоту H 4 SiO 4 (это свойство используют для создания дымовых надписей: выделяющаяся HCl в присутствии аммиака образует белое облако хлорида аммония NH 4 Cl). Тетрафторид кремния SiF 4 образуется при действии фтороводородной (плавиковой) кислоты на стекло:

Na 2 SiO 3 + 6HF ® 2NaF + SiF 4 ­ + 3H 2 O

SiF 4 гидролизуется, образуя ортокремниевую и гексафторокремниевую (H 2 SiF 6) кислоты. H 2 SiF 6 по силе близка к серной кислоте. Многие фторосиликаты металлов растворимы в воде (соли натрия, бария, калия, рубидия, цезия малорастворимы), поэтому HF используют для перевода минералов в раствор при выполнении анализов. Сама кислота H 2 SiF 6 и ее соли ядовиты.

Кремниевые кислоты.

Две оксокислоты кремния H 4 SiO 4 (ортокремниевая) и H 2 SiO 3 (метакремниевая, или кремниевая) существуют только в растворе и необратимо превращаются в SiO 2 , если выпарить воду. Другие кремниевые кислоты получаются за счет различного количества воды в их составе: H 6 Si 2 O 7 (пирокремниевая кислота из двух молекул ортокремниевой кислоты), H 2 Si 2 O 5 и H 4 Si 3 O 8 (ди- и трикремниевая кислоты из двух и соответственно трех молекул метакремниевой кислоты). Все кислоты кремния слабые. При добавлении в раствор силиката серной кислоты образуется гель (желатинообразное вещество), при нагревании и высушивании которого остается твердый пористый продукт – силикагель, имеющий развитую поверхность и используемый как адсорбент газов, осушитель, катализатор и носитель катализаторов.

Поделиться