Дыхательная цепь. Тканевое дыхание

Тканевоме или клемточное дыхание -- совокупность биохимических реакций, протекающих в клетках живых организмов, в процессе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды. Высвобожденная энергия запасается в химических связях макроэргических соединений (молекул аденозинтрифосфорной кислоты и других макроэргов) и может быть использована организмом по мере необходимости. Входит в группу процессов катаболизма. На клеточном уровне рассматривают два основных вида дыхания: аэробное (с участием окислителя-кислорода) и анаэробное. При этом, физиологические процессы транспортировки к клеткам многоклеточных организмов кислорода и удалению из них углекислого газа рассматриваются как функция внешнего дыхания.

Аэромбное дыхамние. В цикле Кребса основное количество молекул АТФ вырабатывается по способу окислительного фосфорилирования на последней стадии клеточного дыхания: в электрон транспортной цепи. Здесь происходит окисление НАД Н и ФАДН 2 , восстановленных в процессах гликолиза, в-окисления, цикла Кребса и т. д. Энергия, выделяющаяся в ходе этих реакций, благодаря цепи переносчиков электронов, локализованной во внутренней мембране митохондрий (у прокариот -- в цитоплазматической мембране), трансформируется в трансмембранный протонный потенциал. Фермент АТФ-синтаза использует этот градиент для синтеза АТФ, преобразуя его энергию в энергию химических связей. Подсчитано, что молекула НАД Н может дать в ходе этого процесса 2,5 молекулы АТФ, ФАДН 2 -- 1,5 молекулы. Конечным акцептором электрона вдыхательной цепи аэробов является кислород.

Анаэромбное дыхамние -- биохимический процесс окисления органических субстратов или молекулярного водорода с использованием в дыхательной ЭТЦ в качестве конечного акцептора электронов вместо O 2 других окислителей неорганической или органической природы. Как и в случае аэробного дыхания, выделяющаяся в ходе реакции свободная энергия запасается в виде трансмембранного протонного потенциала, использующегося АТФ-синтазой для синтеза АТФ.

Брюшное дыхание осуществляется при помощи сокращения диафрагмы и мышц брюшной полости при относительном покое стенок грудной клетки. При вдохе плечи опускаются, грудные мышцы ослабевают, диафрагма сокращается и опускается. Это увеличивает отрицательное давление в грудной полости, и заполняется воздухом нижняя часть легких. При этом повышается внутрибрюшное давление и выпячивается живот. Во время выдоха диафрагма расслабляется, поднимается, брюшная стенка возвращается в исходное положение.

Во время диафрагмального дыхания осуществляется массаж внутренних органов. Чаще всего такое дыхание встречается у мужчин. Оно также возникает, когда человек отдыхает, как правило, во время сна.

Нижнее грудное дыхание задействует межреберные мускулы. В результате сокращения мышц, грудная клетка расширяется наружу и вверх, в легкие поступает воздух, и происходит вдох. Во время нижнего дыхания заполняется лишь часть легких, и задействуются только ребра, но остальные части тела остаются неподвижными. В результате не происходит полноценного процесса газообмена.

Нижнее грудное дыхание, как правило, используют женщины. К нему также прибегают люди, которые часто находятся в сидячем положении, т. к. им все время приходится наклоняться вперед для чтения или письма.

Верхнее грудное дыхание происходит за счет работы мускулатуры ключиц. При вдохе ключицы и плечи поднимаются, и в легкие поступает воздух. При этом приходится прилагать много усилий, т. к. частота вдохов и выдохов увеличивается, а поступление кислорода оказывается незначительным. Такое дыхание можно преднамеренно вызвать, если втянуть живот. В верхнем грудном дыхании участвует только незначительная часть легких и газообмен происходит неполноценно. В результате воздух как следует не очищается и не согревается.

К этому типу дыхания прибегают женщины во время родов.

Смешанное или полное дыхание приводит в движение весь дыхательный аппарат. При этом человека работают все виды мускулатуры, и диафрагма, и полностью вентилируются легкие.

Такое дыхание удаляет шлаки, стимулирует обмен веществ, обновляет организм.

При этом дыхание может быть как глубоким, так и поверхностным. Поверхностное дыхание является легким и ускоренным. Частота дыхательных движений составляет до 60 движений в минуту. При этом делается беззвучный вдох и шумный интенсивный выдох. Это позволяет сбросить напряжение со всех мышц тела. При поверхностном типе дыхания легкие лишь частично наполняются воздухом.

Поверхностно дышат только маленькие дети. Чем старше становится ребенок, тем меньше вдохов за минуту он совершает. Дыхание взрослого человека приобретает глубокий характер. Во время глубокого дыхания частота замедляется, легкие максимально наполняются воздухом. Объем вдоха при этом превышает допустимую норму.

Но является ли такое дыхание благотворным для нашего здоровья? И какой вообще тип дыхания является наилучшим?

Клеточное дыхание - это окисление органических веществ в клетке, в результате которого синтезируются молекулы АТФ. Исходным сырьем (субстратом) обычно служат углеводы, реже жиры и еще реже белки. Наибольшее количество молекул АТФ дает окисление кислородом, меньшее – окисление другими веществами и переносом электронов.

Углеводы, или полисахариды, перед использованием в качестве субстрата клеточного дыхания распадаются до моносахаридов. Так у растений крахмал, а у животных гликоген гидролизуются до глюкозы.

Глюкоза является основным источником энергии почти для всех клеток живых организмов.

Первый этап окисления глюкозы - гликолиз. Он не требует кислорода и характерен как при анаэробном, так и аэробном дыхании.

Биологическое окисление

Клеточное дыхание включает в себя множество окислительно-восстановительных реакций, в которых происходит перемещение водорода и электронов от одних соединений (или атомов) к другим. При потери электрона каким-либо атомом происходит его окисление; при присоединении электрона - восстановление. Окисляемое вещество - это донор, а восстанавливаемое - акцептор водорода и электронов. Окислительно-восстановительные реакции, протекающие в живых организмах носят название биологического окисления, или клеточного дыхания.

Обычно при окислительных реакциях происходит выделение энергии. Причина этого кроется в физических законах. Электроны в окисляемых органических молекулах находятся на более высоком энергетическом уровне, чем в продуктах реакции. Электроны, переходя с более высокого на более низкий энергетический уровень, высвобождают энергию. Клетка умеет фиксировать ее в связях молекул - универсальном «топливе» живого.

Наиболее распространенным в природе конечным акцептором электронов является кислород, который восстанавливается. При аэробном дыхании в результате полного окисления органических веществ образуются углекислый газ и вода.

Биологическое окисление протекает по-этапно, в нем участвуют множество ферментов и соединения, переносящие электроны. При ступенчатом окислении электроны перемещаются по цепи переносчиков. На определенных этапах цепи происходит выделение порции энергии, достаточной для синтеза АТФ из АДФ и фосфорной кислоты.

Биологическое окисление весьма эффективно по-сравнению с различными двигателями. Около половины выделяющейся энергии в конечном итоге фиксируется в макроэргических связях АТФ. Другая часть энергии рассеивается в виде тепла. Поскольку процесс окисления ступенчатый, то тепловая энергия выделяется понемногу и не повреждает клетки. В то же время она служит для поддержания постоянной температуры тела.

Аэробное дыхание

Различные этапы клеточного дыхания у аэробных эукариот происходят

    в матриксе митохондрий – , или цикл трикарбоновых кислот,

    на внутренней мембране митохондрий – , или дыхательная цепь.

На каждом из этих этапов из АДФ синтезируется АТФ, больше всего на последнем. Кислород в качестве окислителя используется только на этапе окислительного фосфорилирования.

Суммарные реакции аэробного дыхания выглядит следующим образом.

Гликолиз и цикл Кребса: C 6 H 12 O 6 + 6H 2 O → 6CO 2 + 12H 2 + 4АТФ

Дыхательная цепь: 12H 2 + 6O 2 → 12H 2 O + 34АТФ

Таким образом биологическое окисление одной молекулы глюкозы дает 38 молекул АТФ. На самом деле нередко бывает меньше.

Анаэробное дыхание

При анаэробном дыхании в окислительных реакциях акцептор водорода НАД не передает водород в конечном итоге на кислород, которого в данном случае нет.

В качестве акцептора водорода может быть использована пировиноградная кислота, образующаяся при гликолизе.

У дрожжей пируват сбраживается до этанола (спиртовое брожение). При этом в процессе реакций образуется также углекислый газ и используется НАД:

CH 3 COCOOH (пируват) → CH 3 CHO (ацетальдегид) + CO 2

CH 3 CHO + НАД · H 2 → CH 3 CH 2 OH (этанол) + НАД

Молочнокислое брожение происходит в животных клетках, испытывающих временный недостаток кислорода, и у ряда бактерий:

CH 3 COCOOH + НАД · H 2 → CH 3 CHOHCOOH (молочная кислота) + НАД

Оба брожения не дают выхода АТФ. Энергию в данном случае дает только гликолиз, и составляет она всего две молекулы АТФ. Значительная часть энергии глюкозы так и не извлекается. Поэтому анаэробное дыхание считается малоэффективным.


Это процесс потребление клетками тканей организма кислорода, который участвует в биологическом окислении. Такой вид окисления называют аэробным окислением. Если конечным акцептором в цепи переноса водорода выступает не кислород, а другие вещества (например пировиноградная кислота), то такой тип окисления называют анаэробным.

Т.о. биологическое окисление - это дегидрирование субстрата с помощью промежуточных переносчиков водорода и его конечного акцептора. Биологическое окисление питательных веществ происходит в митохондриях. В них были обнаружены ферменты, участвующие в цикле лимонной кислоты, дыхательной цепи, окислительного фосфорилирования, в расщеплении жирных кислот и ряда аминокислот.

Дыхательная цепь (ферменты тканевого дыхания) - это переносчики протонов и электронов от окисляемого субстрата на кислород. Окислитель - это соединение, способное принимать электроны. Такая способность количественно характеризуется окислительно-восстановительным потенциалом по отношению к стандартному водородному электроду, рН которого равен 7,0. Чем меньше потенциал соединения, тем сильнее его восстанавливающие свойства и наоборот.

Особенности тканевого дыхания

Процесс тканевого дыхания нельзя считать тождественным процессам биологического окисления (ферментативным процессам окисления различных субстратов, протекающим в животных, растительных и микробных клетках), поскольку значительная часть таких окислительных превращений в организме происходит в анаэробных условиях, т.е. без участия молекулярного кислорода, в отличие от дыхания тканей.

Большая часть энергии в аэробных клетках образуется благодаря дыханию тканей, и количество образующейся энергии зависит от его интенсивности. Интенсивность Д. т. определяется скоростью поглощения кислорода на единицу массы ткани; в норме она обусловлена потребностью ткани в энергии. Интенсивность его наиболее высока в сетчатке глаза, почках, печени; она значительна в слизистой оболочке кишечника, щитовидной железе, яичках, коре головного мозга, гипофизе, селезенке, костном мозге, легких, плаценте, вилочковой железе, поджелудочной железе, диафрагме, сердце, скелетной мышце, находящейся в состоянии покоя. В коже, роговице и хрусталике глаза интенсивность тканевого дыхания невелика. Гормоны щитовидной железы, жирные кислоты и другие биологически активные вещества способны активизировать тканевое дыхание.

Интенсивность такого дыхания определяют полярографически или манометрическим методом в аппарате Варбурга. В последнем случае для характеристики используют так называемый дыхательный коэффициент - отношение объема выделившегося углекислого газа к объему кислорода, поглощенного определенным количеством исследуемой ткани за определенный промежуток времени.

Т. о. любое соединение может отдавать электроны только соединению с более высоким окислительно-восстановительным потенциалом. В дыхательной цепи каждое последующее звено имеет более высокий потенциал, чем предыдущее.

Дыхательная цепь

Дыхательная цепь состоит из: НАД - зависимой дегидрогеназы; ФАД- зависимой дегидрогеназы; Убихинона (КоQ); Цитохрмов b, c, a+a3 .

НАД-зависимые дегидрогеназы. В качестве кофермента содержат НАД и НАДФ. Пиридиновое кольцо никотинамида способно присоединять электроны и протоны водорода.

ФАД и ФМН-зависимые дегидрогеназы содержат в качестве кофермента фосфорный эфир витамина В2 (ФАД).

Убихинон (КоQ) отнимает водород у флавопротеидов и превращается при этом в гидрохинон.

Цитохромы - белки хромопротеиды, способные присоединять электроны, благодаря наличию в своем составе в качестве простетических групп железопорфиринов. Они принимают электрон от вещества, являющегося немного боле сильным восстановителем, и передают его более сильному окислителю. Атом железа связан с атомом азота имидазольного кольца аминоксилоты гистидина с одной стороны от плоскости порфиринового цикла, а с другой стороны с атомом серы метионина. Поэтому потенциальная способность атома железа в цитохромах к связыванию кислорода подавлена.

В цитохроме с порфириновая плоскость ковалентно связана с белком через два остатка цистеина, а в цитохромах b и а, она ковалентно не связано с белком.

В цитохроме а+а3 (цитохромоксидазе) вместо протопорфирина содержатся порфирин А, который отличатся рядом структурных особенностей. Пятое координационное положение железа занято аминогруппой, принадлежащей остатку аминосахара, входящего в состав самого белка.

В отличии от гема гемолгобина атом железа в цитохромах может обратимо переходить из двух в трехвалентное состояние это обеспечивает транспорт электронов.

Потребности тканей в кислороде и его запасы

Потребности тканей в кислороде зависят от функционального состояния клеток, входящих в ее состав. Скорость потребления кислорода обычно выражается в мл кислорода на 1 г веса в минуту. В состоянии покоя кислород относительно интенсивно поглощается миокардом, серым веществом головного мозга (в частности, корой головного мозга), печенью и корковым веществом почек. В тоже время скелетные мышцы, селезенка и белое вещество головного мозга в покое потребляют мало кислорода.
При увеличении активности какого-либо органа потребность его в кислороде увеличивается. При физической нагрузке потребление кислорода миокардом может увеличиться в 3 - 4 раза, а работающими скелетными мышцами - более чем в 20 - 50 раз по сравнению с покоем. Потребление кислорода почками возрастает при увеличении интенсивности реабсорбции ионов натрия.

Количество кислорода, которое клетки могут использовать для окислительных процессов, зависит от конвекционного переноса кислорода кровью и диффузии кислорода из капилляров в ткани. Поскольку единственным запасом кислорода в большинстве тканей служит его физически растворенная фракция, снижение поступления кислорода приводит к кислородному голоданию и к замедлению окислительных процессов.
Единственной тканью, в которой имеются запасы кислорода, является мышечная ткань. Роль депо кислорода играет пигмент миоглобин, способный обратимо связывать кислород. Однако содержание миоглобина в мышцах человека невелико, так, среднее содержание миоглобина в сердце составляет 4 мг/г. Поскольку 1 г миоглобина может связать примерно до 1,34 мл кислорода, запасы кислорода в сердце составляют около 0,005 мл кислорода на 1г ткани. Этого количества в условиях полного прекращения доставки кислорода к миокарду может хватить для того, чтобы поддерживать окислительные процессы лишь в течение примерно 3 - 4 секунд.
Миоглобин играет роль кратковременного депо кислорода. В миокарде кислород, связанный с миоглобином, обеспечивает окислительные процессы в тех участках, кровоснабжение которых на короткий срок снижается или полностью прекращается во время систолы.
В начальном периоде интенсивной мышечной нагрузки увеличенные потребности скелетных мышц в кислороде частично удовлетворяются за счет кислорода, высвобождающегося миоглобином. В дальнейшем возрастает мышечный кровоток, и поступление кислорода к мышцам вновь становится адекватным. Восполнение запасов оксимиоглобина является составной частью кислородного долга, который должен быть покрыт каждым мышечным волокном после окончания работы.

Кислородное голодание тканей

При ряде патологических состояний страдает снабжение тканей кислородом. В этих случаях энергетические потребности клеток могут в течение короткого времени удовлетворяться за счет ограниченных запасов энергии в виде АТФ и креатинфосфата, а также за счет анаэробного гликолиза. Однако эти источники энергии недостаточны и могут использоваться недолго, так как в анаэробных условиях резко возрастает потребность клеток в глюкозе, поступление которой обычно не может удовлетворять эту потребность, и во-вторых, в процессе гликолиза образуется большое количество лактата, который медленно удаляется из ткани для последующей переработки (например, для расщепления в печени, почках или миокарде, или для синтеза гликогена). При значительном недостатке кислорода содержание лактата в крови постоянно нарастает, что приводит к нереспираторному ацидозу. Когда рН внутриклеточной среды падает ниже уровня оптимальной активности ферментных систем, наступают выраженные нарушения клеточного метаболизма.
Основные причины, приводящие к кислородному голоданию (тканевой гипоксии), это понижение напряжения кислорода в артериальной крови (артериальная гипоксия), уменьшение кислородной емкости крови (анемия) и уменьшение кровоснабжения того или иного органа (ишемия).



Тест 1. В клетке тканевое дыхание протекает в:

а) митохондриях

б) рибосомах

в) цитоплазме

Тест 2. В состав кофермента НАД входит витамин:

г) РР

Тест 3. Витамин рибофлавин (В 2 ) входит в состав кофермента:

г) ФМН

Тест 4. В состав ферментов тканевого дыхания – цитохромов входит металл:

а) алюминий

б) железо

Тест 5. Никотинамидные дегидрогеназы используют в качестве кофермента:???

б) кофермент А

Тест 6. Наименьшую величину редокс-потенциала имеет:

а) кислород

в) окисляемое вещество

Тест 7. В дыхательной цепи митохондрий ферменты и коферменты располагаются:

а) в алфавитном порядке

б) по мере увеличения их редокс- потенциалов

в) по мере уменьшения их редокс- потенциалов

г) в произвольном порядке

Тест 8. В процессе тканевого дыхания образуется:

а) аммиак

б) вода

в) мочевина

г) углекислый газ

Тест 9. Образование одной молекулы воды в процессе тканевого дыхания сопровождается синтезом:

а) одной молекулы АТФ

б) трех молекул АТФ

в) пяти молекул АТФ

г) десяти молекул АТФ

Тест 10. В клетке анаэробное окисление протекает в:

а) митохондриях

б) рибосомах

в) цитоплазме

Тест 11. Наибольшую величину редокс-потенциала имеет:

а) кислород

в) окисляемое вещество

Тест 12. Чрезмерному росту скорости свободнорадикального окисления препятствуют:

а) антивитамины

б) антикоагулянты

в) антиоксиданты

г) антитела

Тест 13. Основной источник АТФ в организме:

а) анаэробное окисление

б) микросомальное окисление

в) митохондриальное окисление

г) свободнорадикальное окисление

Ферментивный катализ

Тест 1. Ферменты в организме выполняют функцию:

а) каталитическую

б) структурную

в) транспортную

г) энергетическую

Тест 2. Ферменты проявляют оптимальную активность при температуре:

а) 0-10 ̊̊̊С

б) 35-40 ̊̊̊С

в) 55-75 ̊̊̊С

г) 90-100 ̊̊̊С

Тест 3. Первой стадией ферментативного катализа является:

а) возвращение фермента в исходное состояние

б) образование фермент-субстратного комплекса

в) освобождение продукта реакции

г) химическое преобразование фермент-субстратного комплекса

Тест 4. Ферменты обладают наибольшей активностью:

а) в кислой среде

б) в нейтральной среде

в) в щелочной среде

г) при строго определенном для каждого фермента значении рН

Тест 5. Скорость ферментативной реакции зависит от:

а) аминокислотного состава фермента

б) концентрации фермента

в) молекулярной массы фермента

г) молекулярной массы субстрата

Тест 6. Конкурентные ингибиторы снижают скорость ферментативных реакций вследствие:

а) присоединения к активному центру фермента

б) присоединения к аллостерическому центру фермента

Тест 7. Неконкурентные ингибиторы снижают скорость ферментативных реакций

вследствие:

а) изменения конформации фермента

б) изменения химического состава фермента

в) увеличения количества фермента

г) уменьшения количества фермента

Тест 8. В состав коферментов входят:

а) a-аминокислоты

б) витамины

в) гормоны

г) жирные кислоты

Тест 9. Название класса ферментов указывает на:

а) конформацию фермента

б) молекулярную массу фермента

в) тип кофермента

г) тип химической реакции

Тест 10. Ферменты, катализирующие реакции расщепления с участием воды, относятся к классу:

а) гидролаз

б) изомераз

в) оксидоредуктаз

г) трансфераз

Тест 11. Ферменты, катализирующие реакции внутримолекулярного переноса, относятся к классу:

а) гидролаз

б) изомераз

в) оксидоредуктаз

г) трансфераз

Тест 12. Ферменты, катализирующие реакции межмолекулярного переноса, относятся к классу:

а) гидролаз

б) изомераз

в) оксидоредуктаз

г) трансфераз

Тест 13. Ферменты, катализирующие окислительно-восстановительные реакции, относятся к классу:

а) гидролаз

б) изомераз

в) оксидоредуктаз

г) трансфераз

Тест 14. Каждый фермент имеет индекс:

а) двухзначный

б) трехзначный

в) четырехзначный

г) пятизначный

Тест 15. Фермент с индексом 1.1.1.27 относится к классу:

Дыхание тканевое (синоним клеточное дыхание) - совокупность окислительно-восстановительных процессов в клетках, органах и тканях, протекающих с участием молекулярного кислорода и сопровождающихся запасанием энергии в фосфорильной связи молекул АТФ. Тканевое дыхание является важнейшей частью обмена веществ и энергии в организме. В результате тканевого дыхания при участии специфических ферментов происходит окислительный распад крупных органических молекул - субстратов дыхания - до более простых и в конечном счете до СО 2 и Н 2 О с высвобождением энергии. Принципиальным отличием тканевого дыхания от иных процессов, протекающих с поглощением кислорода (например, от перекисного окисления липидов), является запасание энергии в форме АТФ, не характерное для других аэробных процессов.

Процесс тканевого дыхания нельзя считать тождественным процессам биологического окисления (ферментативным процессам окисления различных субстратов, протекающим в животных, растительных и микробных клетках), поскольку значительная часть таких окислительных превращений в организме происходит в анаэробных условиях, т.е. без участия молекулярного кислорода, в отличие от тканевого дыхания .

Большая часть энергии в аэробных клетках образуется благодаря тканевому дыханию , и количество образующейся энергии зависит от его интенсивности. Интенсивность тканевого дыхания определяется скоростью поглощения кислорода на единицу массы ткани; в норме она обусловлена потребностью ткани в энергии. Интенсивность тканевого дыхания наиболее высока в сетчатке глаза, почках, печени; она значительна в слизистой оболочке кишечника, щитовидной железе, яичках, коре головного мозга, гипофизе, селезенке, костном мозге, легких, плаценте, вилочковой железе, поджелудочной железе, диафрагме, сердце, скелетной мышце, находящейся в состоянии покоя. В коже, роговице и хрусталике глаза интенсивность тканевого дыхания невелика. Гормоны щитовидной железы , жирные кислоты и другие биологически активные вещества способны активизировать тканевое дыхание.

Интенсивность тканевого дыхания определяют полярографически (см. Полярография ) или манометрическим методом в аппарате Варбурга. В последнем случае для характеристики тканевого дыхания используют так называемый дыхательный коэффициент - отношение объема выделившегося углекислого газа к объему кислорода, поглощенного определенным количеством исследуемой ткани за определенный промежуток времени.

Субстратами тканевого дыхания являются продукты превращения жиров, белков и углеводов (см. Азотистый обмен , Жировой обмен , Углеводный обмен ), поступающих с пищей, из которых в результате соответствующих метаболических процессов образуется небольшое число соединений, вступающих в цикл трикарбоновых кислот - важнейший метаболический цикл у аэробных организмов, в котором вовлекаемые в него вещества претерпевают полное окисление. Цикл трикарбоновых кислот представляет собой последовательность реакций, объединяющих конечные стадии метаболизма белков, жиров и углеводов и обеспечивающих восстановительными эквивалентами (атомами водорода или электронами, передающимися от веществ-доноров веществам-акцепторам; у аэробов конечным акцептором восстановительных эквивалентов является кислород) дыхательную цепь в митохондриях (митохондриальное дыхание). В митохондриях происходит химическая реакция восстановления кислорода и сопряженное с этим процессом запасание энергии в виде АТФ, образующегося из АДФ и неорганического фосфата. Процесс синтеза молекулы АТФ или АДФ за счет энергии окисления различных субстратов называется окислительным, или дыхательным фосфорилированием. В норме митохондриальное дыхание всегда сопряжено с фосфорилированием, что связано с регуляцией скорости окисления пищевых веществ потребностью клетки в полезной энергии. При некоторых воздействиях на организм или ткани (например, при переохлаждении) происходит так называемое разобщение окисления и фосфорилирования, приводящее к рассеиванию энергии, которая не фиксируется в виде фосфорильной связи молекулы АТФ, а принимает вид тепловой энергии. Разобщающим действием обладают также гормоны щитовидной железы, жирные кислоты, 2,4-динитрофенол, дикумарин и некоторые другие вещества.

Тканевое дыхание в энергетическом отношении значительно более выгодно для организма, чем анаэробные окислительные превращения питательных веществ, например гликолиз . У человека и высших животных около 2 / 3 всей энергии, получаемой из пищевых веществ, освобождается в цикле трикарбоновых кислот. Так, при полном окислении 1 молекулы глюкозы до СО 2 и Н 2 О запасается 36 молекул АТФ, из которых лишь 2 молекулы образуются в процессе гликолиза.

Поделиться