Титриметрические методы анализа. Химия титрование Титрование кратко

Титриметрический анализ основан на точном измерении количества реактива, израсходованного на реакцию с определяемым веществом. Еще недавно этот вид анализа обычно называли объемным в связи с тем, что наиболее распространенным в практике способом измерения количества реактива являлось измерение объема раствора, израсходованного на реакцию. Сейчас под объемным анализом понимают совокупность методов, основанных на измерении объема жидкой, газовой или твердой фаз.

Название титриметрический связаго со словом титр, обозначающим концентрацию раствора. Титр показывает число граммов растворенного вещества в 1 мл раствора.

Титрованный, или стандартный, раствор - раствор, концентрация которого известна с высокой точностью. Титрование - прибавление титрованного раствора к анализируемому для определения точно эквивалентного количества. Титрующий раствор часто называют рабочим раствором или титрантом. Например, если кислота титруется щелочью, раствор щелочи называется титрантом. Момент титрования, когда количество добавленного титранта химически эквивалентно количеству титруемого вещества, называется точкой эквивалентности.

Реакции, применяемые в титриметрии, должны удовлетворять следующим основным требованиям:

1) реакция должна протекать количественно, т.е. константа равновесия реакции должна быть достаточно велика;

2) реакция должна протекать с большой скоростью;

3) реакция не должна осложняться протеканием побочных реакций;

4) должен существовать способ определения окончания реакции.

Если реакция не удовлетворяет хотя бы одному из этих требований, она не может быть использована в титриметрическом анализе.

В титриметрии различают прямое, обратное и косвенное титрование.

В методах прямого титрования определяемое вещество непосредственно реагирует с титрантом. Для проведения анализа этим методом достаточно одного рабочего раствора.

В методах обратного титрования (или, как их еще называют, методах титрования по остатку) используются два титрованных рабочих раствора: основной и вспомогательный. Широко известно, например, обратное титрование хлорид-иона в кислых растворах. К анализируемому раствору хлорида сначала добавляют заведомый избыток титрованного раствора нитрата серебра (основного рабочего раствора). При этом происходит реакция образования малорастворимого хлорида серебра.

Не вступившее в реакцию избыточное количество вещества AgNO 3 оттитровывают раствором тиоцианата аммония (вспомогательного рабочего раствора).


Третьим основным видом титриметрических определений является титрование заместителя, или титрование по замещению (косвенное титрование). В этом методе к определяемому веществу добавляют специальный реагент, вступающий с ним в реакцию. Один из продуктов взаимодействия затем оттитровывают рабочим раствором. Например, при иодометрическом определении меди к анализируемому раствору добавляют заведомый избыток KI. Происходит реакция 2Cu 2+ +4I - =2CuI+ I 2 . Выделившийся иод оттитровывают тиосульфатом натрия.

Существует еще так называемое реверсивное титрование, при котором стандартный раствор реагента титруют анализируемым раствором.

Расчет результатов титриметрического анализа основан на принципе эквивалентности, в соответствии с которым вещества реагируют между собой в эквивалентных количествах.

Во избежание каких-либо противоречий рекомендуется все реакции кислотно-основного взаимодействия привести к единой общей основе, которой может быть ион водорода. В окислительно-восстановительных реакциях количество реагирующего вещества удобно связать с числом электронов, принимаемых или отдаваемых веществом в данной полуреакции. Это позволяет дать следующее определение.

Эквивалентом называется некая реальная или условная частица, которая может присоединять, высвобождать или быть каким-либо другим образцом эквивалента одному иону водорода в кислотно-основных реакциях или одному электрону в окислительно-восстановительных реакциях.

При использовании термина «эквивалент» всегда необходимо указывать, к какой конкретной реакции он относится. Эквивалент данного вещества являются не постоянными величинами, а зависят от стехиометрии реакции, в которой они принимают участие.

В титриметрическом анализе используют реакции различного типа: - кислотно-основного взаимодействия, комплексообразования и т.д., удовлетворяющие тем требованиям, которые предъявляются к титриметрическим реакциям. Тип реакции, протекающей при титровании положен в основу классификации титриметрических методов анализа. Обычно выделяют следующие методы титриметрического анализа.

1. Методы кислотно-основного взаимодействия связаны с процессом передачи протона:

2. Методы комплексообразования используют реакции образования координационных соединений:

3. Методы осаждения основаны на реакциях образования малорастворимых соединений:

4. Методы окисления - восстановления объединяют многочисленную группу окислительно-восстановительных реакций:

Отдельные титриметрические методы получили название по типу основной реакции, протекающей при титровании или по названию титранта (например, в аргентометрических методах титрантом является раствор AgNO 3 , в перманганатометрических - раствор КМп0 4 и т.д.).

Методы титрования характеризуются высокой точностью: погрешность определений составляет 0,1 - 0,3%. Рабочие растворы устойчивы. Для индикации точки эквивалентности имеется набор разнообразных индикаторов. Среди титриметрических методов, основанных на реакциях комплексообразования, наибольшее значение имеют реакции с применением комплексонов. Устойчивые координационные соединения с комплексонами образуют почти все катионы, поэтому методы комплексонометрии универсальны и применимы к анализу широкого круга разнообразных объектов.

Метод кислотно-основного титрования основан на реакциях взаимодей­ствия между кислотами и основаниями, то есть на реакции нейтрализации:

Н + + ОН - ↔ Н 2 О

Рабочими растворами метода являются растворы сильных кислот (HCl, H 2 S, НNОз и др.) или сильных оснований (NaOH, КОН, Ва(ОН) 2 и др.). В зависимости от титранта метод кислотно-основного титрования подразделяют на ацидиметрию , если титрантом является раствор кислоты, и алкалиметрию , если титрантом является раствор основания.

Рабочие растворы в основном готовят как вторичные стандартные растворы, поскольку исходные для их приготовления вещества не являются стандaртными, а затем их стандартизуют по стандартным веществам или стандартным растворам. Например: растворы кислот можно стандартизовать по стандартным веществам - натрия тетраборату Na 2 B 4 О 7 ∙10Н 2 О, натрия карбонату Nа 2 СО 3 ∙10Н 2 О или по стандартным растворам NaOH, КОН; а растворы оснований - по щавелевой кислоте Н 2 С 2 О 4 ∙Н 2 О, янтарной кислоте Н 2 С 4 Н 4 О 4 или по стандартным растворам HCl, H 2 SO 4 , НNО 3 .

Точка эквивалентности и конечная точка титрования . Согласно правилу эквивалентности титрование необходимо продолжать до тех пор, пока количество прибавленного реагента не станет эквивалентным содержанию определяемого вещества. Наступающий в процессе титрования момент, когда количecтвo стандартного раствора реагента (титранта) становится теоретически строго эквивалентным количеству определяемого вещества согласно определенному уравнению химической реакции, называют точкой эквивалентности .

Точку эквивалентности устанавливают различными способами, например по изменению окраски индикатора, прибавляемого в титруемый раствор. Момент, при котором происходит наблюдаемое изменение цвета индикатора, называют конечной точкой титрования . Очень часто конечная точка титрования не совсем совпадает с точкой эквивалентности. Как правило, они отличаются друг от друга не более чем на 0,02-0,04 мл (1-2 капли) титранта. Это то количество титранта, которое необходимо для взаимодейcтвия с индикатором.

Существует несколько способов количественного определения кислоты или щелочи в различных веществах. Наиболее доступным в условиях школы является метод титрования, который обычно проводится при помощи нормальных растворов кислот или щелочей.

Разберем пример количественного определения кислоты в уксусе при помощи титрования нормальным раствором едкого натра.

Сначала приготовьте 100 мл 1 n раствора NаОН, для этого отвесьте 4 г чистого для анализа или химически чистого едкого натра, поместите его в мерную колбу емкостью 100 мл и долейте дистиллированной воды до метки на шейке колбы. Колбу с раствором несколько раз встряхните. Хорошо перемешанный раствор влейте в бюретку почти доверху, затем спускайте его так, чтобы вогнутая часть мениска находилась на черте нулевого деления.

В стаканчик налейте 20 мл испытуемого уксуса и прибавьте 5-7 капель 1-процентного раствора в спирте фенолфталеина. Стаканчик подставьте под бюретку и по каплям спускайте раствор щелочи, следя все время за окраской раствора. Если жидкость в стаканчике при вливании раствора едкого натра розовеет и окраска быстро пропадает, то продолжайте добавлять щелочь по каплям. Когда розовая окраска станет устойчива и не пропадает в течение 1-2 минут, титрование прекратите и подсчитайте, сколько миллилитров титрующей жидкости пошло на нейтрализацию испытуемой жидкости.

Предположим, что вы истратили 2,5 мл раствора едкого натра. Произведите подсчет количества уксусной кислоты в уксусе: 1 мл 1 n раствора едкого натра содержит 40 г: 1000 = 0,04 г, а 2,5 мл - 0,1 г. Какой же процент уксусной кислоты содержится в испытуемой жидкости?

40 г NaОН соответствует 60 г СН 3 СООН

0,1 г ‒ х г.

Такое количество уксусной кислоты находится в 20 мл уксуса, а в 100 мл - в пять раз больше, т. е. 0,75 г. Таким образом, концентрация уксусной кислоты равняется 0,75%.

Возьмите другой пример: определение кислотности мо­лока.

В молоке имеется молочная кислота (СН 3 СНОНСООН). 1 л нормального раствора кислоты содержит 90 г без­водной молочной кислоты. Возьмите 100 мл молока и ти­труйте 0,1 n раствором NаОН.

Предположим, что вы израсходовали 18 мл децинормального раствора NаОН.

Определите наличие молочной кислоты (С 3 Н 6 0 3) в 100 мл молока.

В 1 л 0,1 n раствора едкого натра содержится 4 г едкого натра, а в 18 мл израсходованного раствора - 0,072 г.

Зная, что 40 г едкого натра нейтрализуют 90 г молоч­ной кислоты, устанавливаем, что 0,072 г NаОН нейтрализуют 0,162 г молочной кислоты.

Такое количество молочной кислоты содержится в 100 мл молока, а в литре - 1,620 г. Каждые 0,09 г молочной кислоты соответствуют одному градусу Тернера, следовательно, испытуемое молоко содержит 1,62:0,09 = 18 градусов Тернера. Нормальное молоко содержит от 16 до 18 градусов. В продажу допускается молоко, имеющее кислотность не выше 21 градуса. Таким образом, испытуемое молоко имеет нормальную кислотность и вполне пригодно для употребления.

При титровании следует придерживаться следующих правил:

1) Бюретку перед употреблением необходимо тщательно мыть при «помощи специального ершика и споласкивать дистиллированной водой.

2) Сначала нужно заполнить бюретку выше нулевого деления, а затем медленно спускать жидкость до нулевого деления, чтобы удалить из резиновой трубки или из крана воздух.

3) Наполнять бюретку жидкостью следует через воронку и так, чтобы жидкость стекала по стенам бюретки.

4) Бюретка должна находиться в строго вертикальном положении.

5) При отсчете делений глаз должен находиться на одной линии с мениском.

6) Выливание жидкости следует проводить с одной и той же скоростью. После того как закрыт кран, необходимо подождать одну-две минуты, чтобы жидкость в бюретке приняла нормальное положение, после чего можно производить отсчет делений.

8) После титрования жидкость из бюретки выливают, бюретку промывают и споласкивают дистиллированной водой.

Если едкий натр или едкое кали загрязнены или покрылись углекислым натрием или углекислым калием, то перед анализом их следует промыть в дистиллированной воде. Поступают следующим образом: берут кусок едкого натра, несколько больший по весу, чем требуется для приготовления титрующего раствора (например, для децинормального раствора берут не 4 г едкого натра, а 5 г), и опускают его на некоторое время в дистиллированную

воду. Как только растворится верхний слой, кусок вынимают и готовят децинормальный раствор.

Взвешивание лучше всего производить в чисто вымытой и предварительно взвешенной фарфоровой чашке. Найдя общий вес чашки с едким натром, вычитают вес чашки и определяют наличие щелочи.

Ознакомившись с вопросами титрования, можете производить количественное определение кислот и щелочей в испытуемых жидкостях: в почвенном растворе, молоке, патоке, в различных соках, воде и т. п.

При анализе щелочей в бюретку вливайте нормальный раствор кислот и в качестве индикатора используйте водный раствор метилового оранжевого или метилового красного.

При титровании жидкости, содержащей большой процент кислоты или щелочи, применяйте одно-, двух- или трехнормальные растворы, для жидкостей с небольшой концентрацией кислоты или щелочи применяйте деци- и сантинормальные растворы.

В качестве упражнений решите ряд экспериментальных задач.

  1. Возьмите 20 мл продажного уксуса и определите процент находящейся в нем уксусной кислоты. Титрование проводите 0,5 n раствором едкого калия.
  2. Определите концентрацию раствора едкой щелочи (NаОН, КОН, Ва(ОН) 2), имеющейся в школьной лаборатории. Для этого возьмите 25 мл раствора и титруйте 1 n раствором соляной кислоты. В качестве индикатора используйте 0,5-процентный раствор метилового оранжевого. Его следует влить в испытуемую жидкость, не более пяти капель. При изменении окраски не пропадающей в течение 1-2 минут, титрование прекратите и произведите подсчет.

Изучив приемы объемного анализа, вы можете проводить аналитические работы с органическими и неорганическими веществами.

Приобретенные навыки помогут вам в дальнейшем самостоятельно проводить аналитические работы в заводских лабораториях над различными веществами, а также в лабораториях сельскохозяйственных учреждений по анализу почвы, удобрений, пищевых продуктов и т. д.

Реакция должна быть практически необратимой, т.е. заканчиваться полным расходованием исходных веществ и иметь большое значение константы равновесия.

При этом не должно образовываться никаких побочных продуктов как вследствие взаимодействия исходных веществ с окружающей средой (например, с кислородом или углекислым газом, содержащимися в воздухе), так и в результате протекания между ними нескольких параллельных реакций.

В реакциях должна точно и быстро фиксироваться точка эквивалентности.

2. Реакция между веществами рабочего и исследуемого растворов должна протекать в строгом стехиометрическом соотношении, соответствующем её химическому уравнению.

4. Реакция должна протекать с достаточной скоростью, т.е. за малый отрезок времени. Наиболее оптимальным в этом случае является время, необходимое для перемешивания одной добавленной капли титранта с объёмом титруемого раствора, т.е. 1-3 секунды.

Если реакция осуществляется медленно, то сложно точно определить наступление точки эквивалентности. При этом также теряется основное достоинство титриметрии – быстрота выполнения анализа и получения результата.

Если химическая реакция не удовлетворяет хотя бы одному из вышеперечисленных требований, она не может быть использована в титриметрическом анализе. Но если ей невозможно найти замену, то такую реакцию пытаются «приспособить» для применения в титриметрии. Например, многие окислительно-восстановительные реакции при обычных условиях протекают медленно, являются обратимыми и многонаправленными, т.е. исходные вещества в них расходуются одновременно по нескольким направлениям. Для устранения данных недостатков изменяют условия проведения реакции. Например, осуществляют её при нагревании или в присутствии катализаторов (это позволяет существенно увеличить скорость реакции), а также в определённой среде: кислой, нейтральной или щелочной (это позволяет устранить обратимость и многонаправленность).

Следует, однако, подчеркнуть, что такое «приспособление» приводит к усложнению метода. Применение его целесообразно идти лишь тогда, когда неизвестна более удобная химическая реакция.

Различают три основных способа титрования: прямое, обратное, косвенное или заместительное.

При прямом титровании используют исследуемый и один рабочий растворы. В процессе определения к определённому точно измеренному объёму одного из них по каплям добавляют второй раствор до наступления точки эквивалентности.

Закон эквивалентов в этом случае может быть математически записан следующим образом:

N 1 V 1 = N 2 V 2


где V 1 и V 2 – объёмы израсходованных исследуемого и рабочего растворов, соответственно; N 1 и N 2 - молярные концентрации химических эквивалентов веществ исследуемого и рабочего растворов, соответственно.

Молярную концентрацию химического эквивалента вещества в исследуемом растворе рассчитывают по формуле:

При обратном титровании используют исследуемый и два рабочих раствора, один их которых является вспомогательным, а второй применяют для титрования.

В процессе анализа к определённому точно измеренному объёму исследуемого раствора одномоментно добавляют взятый в избытке фиксированный объём вспомогательного рабочего раствора. В результате протекания химической реакции вещество, присутствующее в исследуемом растворе, расходуется полностью. Не прореагировавший избыток вещества вспомогательного раствора титруется затем вторым рабочим раствором до наступления точки эквивалентности, например:

К 2 SO 3 + I 2 + H 2 O → K 2 SO 4 + 2HI

Исследуемый Вспомогательный

раствор рабочий раствор

I 2 + 2Na 2 S 2 O 3 → 2NaI + Na 2 S 4 O 6

Второй рабочий

Таким образом, вещество, присутствующее во вспомогательном рабочем растворе, реагирует как с веществом исследуемого раствора, так и с веществом второго рабочего раствора. Закон эквивалентов в этом случае математически может быть записан следующим образом:

N 2 V 2 = N 1 V 1 + N 3 V 3

где V 1 , V 2 , V 3 – израсходованные объёмы исследуемого, вспомогательного и второго рабочих растворов, соответственно; N 1 , N 2 , N 3 – молярные концентрации химических эквивалентов веществ в исследуемом, вспомогательном и во втором рабочих растворах, соответственно.

Молярную концентрацию химического эквивалента рассчитывают по формуле:

Обратное титрование в аналитической практике может называться иначе титрованием по остатку или с двумя титрантами.

Оно используется, если определяемое вещество не реагирует или реагируют медленно с веществом второго рабочего раствора, либо в реакции между ними невозможно определить точку эквивалентности.

При косвенном, или заместительном, титровании также используют исследуемый раствор и два рабочих раствора. В ходе анализа к точно измеренному объёму исследуемого раствора одномоментно добавляют нефиксированный заведомый избыток первого рабочего раствора. В результате протекающей реакции вещество исследуемого раствора полностью расходуется с образованием эквивалентного количества соответствующего продукта реакции, который затем титруется вторым рабочим раствором до наступления точки эквивалентности, например:

K 2 Cr 2 O 7 + 6KI + 7H 2 SO 4 = Cr 2 (SO 4) 3 + 3I 2 + 4K 2 SO 4 + 7H 2 O

исследуемый первый рабочий эквивалентное

раствор раствор кол-во продукта реакции

2Na 2 S 2 O 3 + I 2 = 2NaI + Na 2 S 4 O 6

второй рабочий

Таким образом, мы как бы замещаем определяемое вещество на другое, которое впоследствии и подвергаем анализу.

Так как количество вещества эквивалента образовавшегося продукта и количество вещества эквивалента в исследуемом растворе равны между собой, то молярную концентрацию химического эквивалента вещества в исследуемом растворе рассчитываем по такой же формуле, как и при прямом титровании.

Заместительное титрование применяют, когда непосредственное определение вещества в исследуемом растворе невозможно: отсутствует подходящий титрант, нельзя установить точку эквивалентности и т.п.

Введение

Лабораторный практикум выполняется после изучения теоретического курса «Аналитическая химия и ФХМА» и служит для закрепления и углубления полученных знаний.

Задачей количественного анализа является определение количества (содержания) элементов (ионов), радикалов, функциональных групп, соединений или фаз в анализируемом объекте . В этом курсе рассматриваются основные методы титриметрического (объемного) анализа, способы титрования и их практическое применение.

Прежде чем приступить к выполнению лабораторного практикума, студенты проходят инструктаж по технике безопасности. Перед выполнением каждой работы студент должен сдать коллоквиум по разделам, указанным преподавателем, а также по методике проведения анализа. Для этого необходимо:

1) повторить соответствующий раздел курса;

2) подробно ознакомиться с методикой проведения работы;

3) составить уравнения химических реакций, лежащих в основе проводимого химического анализа;

4) изучить особенности проведения анализа с точки зрения техники безопасности.

По результатам работы студенты составляют отчёт, в котором должны быть указаны:

· название работы;

· цель работы;

· теоретические основы метода: сущность метода, основное уравнение, расчеты и построение кривых титрования, выбор индикатора;

· реактивы и оборудование, используемые в ходе проведения работы;

· методика анализа:

Приготовление первичных стандартов;

Приготовление и стандартизация рабочего раствора;

Определение содержания исследуемого вещества в растворе;

· экспериментальные данные;

· статистическая обработка результатов анализа;

· выводы.

ТИТРИМЕТРИЧЕСКИЕ МЕТОДЫ АНАЛИЗА



Титриметрический метод анализа основан на измерении объема реагента точно известной концентрации (титранта), затраченного на химическую реакцию с определяемым веществом.

Процедура определения (титрование) состоит в том, что к точно известному объему раствора определяемого вещества с неизвестной концентрацией из бюретки по каплям добавляют титрант, до наступления точки эквивалентности.

где X – определяемое вещество; R – титрант, P – продукт реакции.

Точка эквивалентности (т.э.) – это теоретическое состояние раствора, наступающее в момент добавления эквивалентного количества титранта R к определяемому веществу X . На практике титрант добавляют к определяемому веществу до достижения конечной точкой титрования (к.т.т.), под которой понимают при визуальной индикации точки эквивалентности момент изменения окраски индикатора, добавленного в раствор. Кроме визуальной индикации точка эквивалентности может быть зарегистрирована инструментальными способами. В этом случае под конечной точкой титрования (к.т.т.) понимают момент резкого изменения физической величины, измеряемой в процессе титрования (сила тока, потенциал, электропроводность и т. д.).

В титриметрическом методе анализа используются следующие типы химических реакций: реакции нейтрализации, реакции окисления-восстановления, реакции осаждения и реакции комплексообразования.

В зависимости от типа применяемой химической реакции различают следующие методы титриметрического анализа:

– кислотно-основное титрование;

– осадительное титрование;

– комплексонометрическое титрование или комплексонометрия;

– окислительно-восстановительное титрование или редоксиметрия.

К реакциям, применяемым в титриметрическом методе анализа, предъявляют следующие требования:

· реакция должна протекать в стехиометрических соотношениях, без побочных реакций;

· реакция должна протекать практически необратимо (≥ 99,9 %), константа равновесия реакции К р >10 6 , образующиеся осадки должны иметь растворимость S < 10 -5 моль/дм 3 , а образующиеся комплексы – К уст > 10 -6 ;

· реакция должна протекать с достаточно большой скоростью;

· реакция должна протекать при комнатной температуре;

· точка эквивалентности должна фиксироваться четко и надежно каким-либо способом.

Способы титрования

В любом методе титриметрического анализа существует несколько способов титрования. Различают прямое титрование, обратное титрование и титрование по замещению .

Прямое титрование – к раствору определяемого вещества добавляют по каплям титрант до достижения точки эквивалентности.

Схема титрования: X + R = P .

Закон эквивалентов для прямого титрования:

C (1/ z) Х V Х = C (1/ z) R V R . (2)

Количество (массу) определяемого вещества, содержащееся в исследуемом растворе, вычисляют, используя закон эквивалентов (для прямого титрования)

m Х = C (1/z)R V R M (1/z) Х ٠10 -3 , (3)

где C (1/ z) R – молярная концентрация эквивалента титранта, моль/дм 3 ;

V R – объем титранта, см 3 ;

M (1/ z ) Х – молярная масса эквивалента определяемого вещества;

C (1/ z) Х – молярная концентрация эквивалента определяемого вещества, моль/дм 3 ;

V Х – объем определяемого вещества, см 3 .

Обратное титрование – используют два титранта. Сначала
к анализируемому раствору добавляют точный объем первого титранта (R 1 ), взятый в избытке. Остаток непрореагировавшего титранта R 1 оттитровывают вторым титрантом (R 2 ). Количество титранта R 1 , израсходованного
на взаимодействие с анализируемым веществом (Х ) определяют по разности между добавленным объемом титранта R 1 (V 1 ) и объемом титранта R 2 (V 2 ) затраченного на титрование остатка титранта R 1 .

Схема титрования: X + R 1 фиксированный избыток = P 1 (R 1 остаток).

R 1 остаток + R 2 = P 2 .

При использовании обратного титрования закон эквивалентов записывается следующим образом:

Массу определяемого вещества в случае обратного титрования вычисляют по формуле

Способ обратного титрования применяется в тех случаях, когда для прямой реакции невозможно подобрать подходящий индикатор или она протекает с кинетическими затруднениями (низкая скорость химической реакции).

Титрование по замещению (косвенное титрование) – применяют в тех случаях, когда прямое или обратное титрование определяемого вещества невозможно или вызывает затруднения либо отсутствует подходящий индикатор.

К определяемому веществу Х добавляют какой-либо реагент А в избытке, при взаимодействии с которым выделяется эквивалентное количество вещества Р . Затем продукт реакции Р оттитровывают подходящим титрантом R .

Схема титрования: X + А избыток = P 1.

P 1 + R = P 2.

Закон эквивалентов для титрования по замещению записывают следующим образом:

Так как число эквивалентов определяемого вещества Х и продукта реакции Р одинаковы, расчет массы определяемого вещества в случае косвенного титрования вычисляют по формуле

m Х = C (1/z) R V R M (1/z) Х ٠10 -3 . (7)

Реактивы

1. Янтарная кислота Н 2 С 4 Н 4 О 4 (х.ч.) – первичный стандарт.

2. Раствор гидроксида натрия NaOH с молярной концентрацией
~2,5 моль/дм 3

3. Н 2 О дистиллированная.

Оборудование студенты описывают самостоятельно.

Ход выполнения работы:

1. Приготовление первичного стандарта янтарной кислоты HOOCCH 2 CH 2 COOH.

Янтарную кислоту готовят объемом 200,00 см 3 с молярной концентрацией эквивалента моль/дм 3 .

г/моль.

Уравнение реакции:

Взятие навески (взвешивание):

Масса навески

Навеску количественно переносят в мерную колбу ( см 3), добавляют 50 – 70 см 3 дистиллированной воды, перемешивают до полного растворения янтарной кислоты, доводят до метки дистиллированной водой
и тщательно перемешивают.

рассчитывают
по формуле

Реактивы

1. Карбонат натрия Na 2 CO 3 (х.ч.) – первичный стандарт.

2. Н 2 О дистиллированная.

3. Хлороводородная кислота НСl концентрации 1:1 (r=1,095 г/см 3).

4. Кислотно-основной индикатор (выбирают по кривой титрования).

5. Смешанный индикатор – метиловый оранжевый и метиленовый синий.

Ход выполнения работы:

1. Приготовление первичного стандарта карбоната натрия (Na 2 CO 3).

Раствор карбоната натрия готовят объёмом 200,00 см 3 с молярной концентрацией эквивалента моль/дм 3 .

Расчет массы навески, г: (масса берется с точностью до четвертого знака после запятой).

Уравнения реакции:

1) Na 2 CO 3 + HCl = NaHCO 3 + NaCl

2) NaHCO 3 + HCl = NaCl + H 2 O + CO 2

_____________________________________

Na 2 CO 3 +2HCl = 2NaCl + H 2 O + CO 2

H 2 CO 3 – слабая кислота (K a1 = 10 -6,35 , K a2 = 10 -10,32).

Взятие навески (взвешивание):

Масса часового стекла (стакана)

Масса часового стекла (стакана) с навеской

Масса навески

Навеску количественно переносят в мерную колбу ( см 3), добавляют 50 – 70 см 3 дистиллированной воды, перемешивают до полного растворения карбоната натрия, доводят до метки дистиллированной водой
и тщательно перемешивают.

Фактическую концентрацию первичного стандарта рассчитывают
по формуле

2. Приготовление и стандартизация титранта (раствора HCl)

Раствор хлороводородной кислоты готовят объемом примерно 500 см 3
с молярной концентрацией эквивалента примерно 0,05÷0,06 моль/дм 3)

Титрант – раствор хлороводородной кислоты приблизительной концентрацией 0,05 моль/дм 3 готовят из хлороводородной кислоты, разбавленной 1:1 (r=1,095 г/см 3).

Стандартизацию раствора HCl проводят по первичному стандарту Na 2 CO 3 прямым титрованием, способом пипетирования.

Индикатор выбирают по кривой титрования карбоната натрия хлороводородной кислотой (рис. 4).

Рис. 4. Кривая титрования 100,00 см 3 раствора Na 2 CO 3 с С = 0,1000 моль/дм 3 раствором HCl с С 1/ z = 0,1000 моль/дм 3

При титровании до второй точки эквивалентности используют индикатор метиловый оранжевый, 0,1%-ный водный раствор (рТ = 4,0). Изменение окраски от желтой до оранжевой (цвет «чайной розы»). Интервал перехода
(рН = 3,1 – 4,4) .

Схема 3. Стандартизация раствора HCl

В коническую колбу для титрования вместимостью 250 см 3 помещают аликвоту 25,00 см 3 стандартного раствора Na 2 CO 3 (пипеткой), добавляют 2 – 3 капли метилового оранжевого, разбавляют водой до 50 – 75 см 3 и титруют раствором хлороводородной кислоты до перехода окраски из желтой в цвет «чайной розы» от одной капли титранта. Титрование проводят в присутствии «свидетеля» (исходный раствор Na 2 CO 3 с индикатором). Результаты титрования заносят в табл. 4. Концентрацию хлороводородной кислоты определяют по закону эквивалентов: .

Таблица 4

Результаты стандартизации раствора соляной кислоты

Задачи

1. Сформулируйте понятие эквивалента в кислотно-основных реакциях . Вычислите величину эквивалентов соды и фосфорной кислоты в следующих реакциях:

Na 2 CO 3 + HCl = NaHCO 3 +NaCl

Na 2 CO 3 + 2HCl = 2NaCl + CO 2 + H 2 O

H 3 PO 4 + NaOH = NaH 2 PO 4 + H 2 O

H 3 PO 4 + 2NaOH = Na 2 HPO 4 + H 2 O

H 3 PO 4 + 3NaOH = Na 3 PO 4 + 3H 2 O

2. Напишите уравнения реакций между соляной кислотой, серной кислотой, гидроксидом натрия, гидроксидом алюминия, карбонатом натрия, гидрокарбонатом калия и рассчитайте эквивалентную массу этих веществ.

3. Постройте кривую титрования 100,00 см 3 соляной кислоты с молярной концентрацией эквивалента 0,1 моль/дм 3 гидроксидом натрия с молярной концентрацией эквивалента 0,1 моль/дм 3 . Выберите возможные индикаторы

4. Постройте кривую титрования 100,00 см 3 акриловой кислоты (CH 2 =CHCOOH, pK a = 4,26) с молярной концентрацией эквивалента
0,1 моль/дм 3 гидроксидом натрия с молярной концентрацией эквивалента
0,1 моль/дм 3 . Как изменяется состав раствора в процессе титрования? Выберите возможные индикаторы и рассчитайте индикаторную погрешность титрования.

5. Постройте кривую титрования гидразина (N 2 H 4 +H 2 O, pK b = 6,03)
с молярной концентрацией эквивалента 0,1 моль/дм 3 соляной кислотой
с молярной концентрацией эквивалента 0,1 моль/дм 3 . В чем сходство
и различие расчетов рН и кривой титрования в сравнении с кривой титрования слабой кислоты щелочью? Выберите возможные индикаторы
и рассчитайте индикаторную погрешность титрования.

6. Вычислите коэффициенты активности и активные концентрации ионов
в 0,001 М растворе сульфата алюминия, 0,05 М карбоната натрия, 0,1 М хлорида калия.

7. Вычислите рН 0,20 М раствора метиламина, если его ионизация в водном растворе описывается уравнением

В + Н 2 О = ВН + + ОН - , К b = 4,6 ×10 - 3 , где В – основание.

8. Вычислить константу диссоциации хлорноватистой кислоты HOCl, если 1,99 × 10 - 2 М раствор имеет рН = 4,5.

9. Вычислите рН раствора, содержащего 6,1 г/моль гликолевой кислоты (СH 2 (OH)COOH, К а = 1,5 × 10 - 4).

10. Вычислите рН раствора, полученного смешением 40 мл 0,015 М раствора хлороводородной кислоты с:

а) 40 мл воды;

б) 20 мл 0,02 М раствора гидроксида натрия;

в) 20 мл 0,02 М раствора гидроксида бария;

г) 40 мл 0,01 М раствора хлорноватистой кислоты, К а =5,0 × 10 - 8 .

11. Вычислите концентрацию ацетат-иона в растворе уксусной кислоты
c массовой долей 0,1 %.

12. Вычислите концентрацию иона аммония в растворе аммиака c массовой долей 0,1 %.

13. Рассчитайте массу навески карбоната натрия, необходимую для приготовления 250,00 мл 0,5000 М раствора .

14. Рассчитайте объем раствора соляной кислоты с молярной концентрацией эквивалента 11 моль/л и объем воды, которые необходимо взять для приготовления 500 мл 0,5 М раствора соляной кислоты.

15. В 300 мл 0,3 %-ного раствора хлороводородной кислоты растворили 0,15 г металлического магния. Вычислите молярную концентрацию ионов водорода, магния и хлора в полученном растворе.

16. При смешении 25,00 мл раствора серной кислоты с раствором хлорида бария получено 0,2917 г сернокислого бария. Определите титр раствора серной кислоты.

17. Вычислить массу карбоната кальция, вступившего в реакцию
с 80,5 ммоль хлороводородной кислоты.

18. Сколько граммов однозамещенного фосфата натрия надо добавить
к 25,0 мл 0,15 М раствора гидроксида натрия, чтобы получить раствор с рН=7? Для фосфорной кислоты pK а1 = 2,15; pK а2 = 7,21; pK а3 = 12,36.

19. На титрование 1,0000 г дымящейся серной кислоты, тщательно разбавленной водой, расходуется 43,70 мл 0,4982 М раствора гидроксида натрия. Известно, что дымящаяся серная кислота содержит серный ангидрид, растворенный в безводной серной кислоте. Вычислить массовую долю серного ангидрида в дымящей серной кислоте.

20. Абсолютная погрешность измерения объема с помощью бюретки составляет 0,05 мл. Рассчитать относительную погрешность измерения объемов в 1; 10 и 20 мл.

21. В мерной колбе вместимостью 500,00 мл приготовлен раствор
из навески 2,5000 г карбоната натрия. Вычислить:

а) молярную концентрацию раствора;

б) молярную концентрацию эквивалента (½ Na 2 CO 3);

в) титр раствора;

г) титр по соляной кислоте.

22. Какой объем 10 %-ного раствора карбоната натрия плотностью
1,105 г/см 3 нужно взять для приготовления:

а) 1 л раствора с титром ТNa 2 CO 3 = 0,005000 г/см 3 ;

б) 1 л раствора с ТNa 2 CO 3 /HCl = 0,003000 г/см 3 ?

23. Какой объем соляной кислоты с массовой долей 38,32 % и плотностью 1,19 г/см 3 следует взять для приготовления 1500 мл 0,2 М раствора?

24. Какой объем воды нужно добавить к 1,2 л 0,25 М HCl, чтобы приготовить 0,2 М раствор?

25. Из 100 г технического гидроксида натрия, содержащего 3 % карбоната натрия и 7 % индифферентных примесей, приготовили 1л раствора. Вычислить молярную концентрацию и титр по соляной кислоте полученного щелочного раствора, считая, что карбонат натрия титруется до угольной кислоты.

26. Имеется образец, в котором может содержаться NaOH, Na 2 CO 3 , NaHCO 3 или смесь названных соединений массой 0,2800 г. Пробу растворили в воде.
На титрование полученного раствора в присутствии фенолфталеина расходуется 5,15 мл, а в присутствии метилового оранжевого – 21,45 мл соляной кислоты с молярной концентрацией эквивалента 0,1520 моль/л. Определить состав образца и массовые доли компонентов в образце.

27. Постройте кривую титрования 100,00 см 3 0,1000 М раствора аммиака 0,1000 М раствором соляной кислоты, обоснуйте выбор индикатора.

28. Вычислите рН точки эквивалентности, начала и конца титрования 100,00 см 3 0,1000 М раствора малоновой кислоты (HOOCCH 2 COOH) 0,1000 М раствором гидроксида натрия (рК а 1 =1,38; рК а 2 =5,68).

29. На титрование 25,00 см 3 раствора карбоната натрия с молярной концентрацией эквивалента 0,05123 моль/дм 3 пошло 32,10 см 3 соляной кислоты. Вычислите молярную концентрацию эквивалента соляной кислоты.

30. Сколько мл 0,1 М раствора хлорида аммония необходимо добавить
к 50,00 мл 0,1 М раствора аммиака, чтобы получился буферный раствор
с рН=9,3.

31. Смесь серной и фосфорной кислот перенесли в мерную колбу объемом 250,00 см 3 . Для титрования взяли две пробы по 20,00 см 3 , одну оттитровали раствором гидроксида натрия с молярной концентрацией эквивалента
0,09940 моль/дм 3 с индикатором метилоранжем, а вторую с фенолфталеином. Расход гидроксида натрия в первом случае составил 20,50 см 3 , а во втором 36,85 см 3 . Определите массы серной и фосфорной кислот в смеси.

В комплексонометрии

До точки эквивалентности =(C M V M – C ЭДТА V ЭДТА)/(V М +V ЭДТА). (21)

В точке эквивалентности = . (22)

После точки эквивалентности = . (23)

На рис. 9 показаны кривые титрования иона кальция в буферных растворах с различными значениями рН. Видно, что титрование Са 2+ возможно только при рН ³ 8.

Реактивы

2. Н 2 О дистиллированная.

3. Стандартный раствор Mg (II) с молярной концентрацией
0,0250 моль/дм 3 .

4. Аммиачный буфер с рН = 9,5.

5. Раствор гидроксида калия КОН с массовой долей 5%.

6. Эриохром черный Т, индикаторная смесь.

7. Калькон, индикаторная смесь.

Теоретические основы метода:

Метод основан на взаимодействии ионов Са 2+ и Мg 2+ с динатриевой солью этилендиаминтетрауксусной кислоты (Na 2 H 2 Y 2 или Na-ЭДТА) с образованием прочных комплексов в молярном отношении M:L=1:1 в определённом интервале рН.

Для фиксирования точки эквивалентности при определении Са 2+ и Мg 2+ используют калькон и эриохром черный Т.

Определение Са 2+ проводят при рН ≈ 12, при этом Mg 2+ находится
в растворе в виде осадка гидроксида магния и не титруется ЭДТА.

Mg 2+ + 2OH - = Mg(OH) 2 ↓

Са 2+ + Y 4- « CaY 2-

При рН ≈ 10 (аммиачный буферный раствор) Мg 2+ и Са 2+ находятся
в растворе в виде ионов и при добавлении ЭДТА титруются совместно.

Ca 2+ + HY 3- « CaY 2- + H +

Mg 2+ + HY 3- « MgY 2- +H +

Для определения объема ЭДТА, затраченного на титрование Mg 2+ ,
из суммарного объёма, пошедшего на титрование смеси при рН ≈ 10, вычитают объём, пошедший на титрование Са 2+ при рН ≈ 12.

Для создания рН ≈ 12 применяют 5% – ный раствор KOH, для создания
рН ≈ 10 используют аммиачный буферный раствор (NH 3 ×H 2 O + NH 4 Cl).

Ход выполнения работы:

1. Стандартизация титранта – раствора ЭДТА (Na 2 H 2 Y)

Раствор ЭДТА готовят приблизительной концентрации 0,025 М
из ≈ 0,05 М раствора, разбавляя его дистиллированной водой в 2 раза. Для стандартизации ЭДТА применяют стандартный раствор MgSO 4
c концентрацией 0,02500 моль/дм 3 .

Схема 5. Стандартизация титранта – раствора ЭДТА

В коническую колбу для титрования вместимостью 250 см 3 помещают 20,00 cм 3 стандартного раствора MgSO 4 c концентрацией 0,02500 моль/дм 3 , добавляют ~ 70 см 3 дистиллированной воды, ~ 10 см 3 аммиачного буферного раствора с рН ~ 9,5 – 10 и вносят индикатор эриохром чёрный Т около 0,05 г
(на кончике шпателя). При этом раствор окрашивается в винно-красный цвет. Раствор в колбе медленно титрируют раствором ЭДТА до перехода окраски из винно-красной в зелёную. Результаты титрования заносят в табл. 6. Концентрацию ЭДТА определяют по закону эквивалентов: .

Таблица 6

Результаты стандартизации раствора ЭДТА

2. Определение содержания Са 2+

Кривые титрования Са 2+ раствором ЭДТА при рН=10 и рН=12 строят самостоятельно.

Раствор задачи в мерной колбе доводят до метки дистиллированной водой и тщательно перемешивают.

Схема 6. Определение содержания Са 2+ в растворе

В коническую колбу для титрования вместимостью 250 см 3 помещают аликвоту исследуемого раствора 25,00 см 3 , содержащую кальций и магний, добавляют ~ 60 см 3 воды, ~ 10 см 3 5% – ного раствора КОН. После выпадения аморфного осадка Mg(OH) 2 ↓ в раствор вносят индикатор калькон около 0,05 г (на кончике шпателя) и медленно титруют раствором ЭДТА до перехода окраски из розовой в бледно-голубую. Результаты титрования (V 1) заносят в табл.7.

Таблица 7

№ опыта Объем ЭДТА, см 3 Содержание Са 2+ в растворе, г
25,00
25,00
25,00
25,00
25,00

3. Определение содержания Mg 2+

Кривую титрования Mg 2+ раствором ЭДТА при рН=10 строят самостоятельно.

Схема 7. Определение содержания Mg 2+ в растворе

В коническую колбу для титрования вместимостью 250 см 3 помещают аликвоту 25,00 см 3 исследуемого раствора, содержащую кальций и магний, добавляют ~ 60 см 3 дистиллированной воды, ~ 10 см 3 аммиачного буферного раствора с рН ~ 9,5–10 и вносят индикатор эриохром чёрный Т около 0,05 г
(на кончике шпателя). При этом раствор окрашивается в винно-красный цвет. Раствор в колбе медленно титрируют раствором ЭДТА до перехода окраски из винно-красной в зелёную. Результаты титрования (V 2) заносят в табл. 8.

Таблица 8

Результаты титрования раствора, содержащего кальций и магний

№ опыта Объем исследуемого раствора, см 3 Объем ЭДТА, V ∑ , см 3 Содержание Mg 2+ в растворе, г
25,00
25,00
25,00
25,00
25,00

Реактивы

1. Раствор ЭДТА с молярной концентрацией ~ 0,05 моль/дм 3 .

2. Стандартный раствор Cu(II) с титром 2,00×10 -3 г/дм 3 .

3. Н 2 О дистиллированная.

4. Аммиачный буфер с рН~ 8 – 8,5.

5. Мурексид, индикаторная смесь.

Задачи

1. Вычислите α 4 для ЭДТА при pH=5, если константы ионизации ЭДТА следующие: K 1 =1,0·10 -2 , K 2 =2,1·10 -3 , K 3 =6,9·10 -7 , K 4 =5,5·10 -11 .

2. Постройте кривую титрования 25,00 мл 0,020 М раствора никеля 0,010 М раствором ЭДТА при pH=10, если константа устойчивости
К NiY = 10 18,62 . Вычислите p после добавления 0,00; 10,00; 25,00; 40,00; 50,00 и 55,00 мл титранта.

3. На титрование 50,00 мл раствора, содержащего ионы кальция
и магния, потребовалось 13,70 мл 0,12 М раствора ЭДТА при pH=12 и 29,60 мл при pH=10. Выразите концентрации кальция и магния в растворе в мг/мл.

4. При анализе в 1 л воды найдено 0,2173 г оксида кальция и 0,0927 г оксида магния. Вычислите, какой объём ЭДТА концентрации 0,0500 моль/л был затрачен на титрование.

5. На титрование 25,00 мл стандартного раствора, содержащего 0,3840 г сульфата магния, израсходовано 21,40 мл раствора трилона Б. Вычислите титр этого раствора по карбонату кальция и его молярную концентрацию.

6. На основании констант образования (устойчивости) комплексонатов металлов, приведенных ниже, оцените возможность комплексонометрического титрования ионов металлов при pH = 2; 5; 10; 12.

7. При титровании 0,01 М раствора Ca 2+ 0,01 М раствором ЭДТА при pH=10 константа устойчивости K CaY = 10 10,6 . Вычислите, какой должна быть условная константа устойчивости комплекса металла с индикатором при pH=10, если в конечной точке титрования =.

8. Константа кислотной ионизации индикатора, используемого при комплексонометрическом титровании, равна 4,8·10 -6 . Вычислите содержание кислотной и щелочной форм индикатора при pH = 4,9, если его общая концентрация в растворе составляет 8,0·10 -5 моль/л. Определите возможность использования данного индикатора при титровании раствора
с pH=4,9, если цвет его кислотной формы совпадает с цветом комплекса.

9. Для определения содержания алюминия в образце навеску образца 550 мг растворили и добавили 50,00 мл 0,05100 М раствора комплексона III. Избыток последнего оттитровали 14,40 мл 0,04800 М раствором цинка (II). Рассчитайте массовую долю алюминия в образце.

10. При разрушении комплекса, содержащего висмут и йодид-ионы, последние титруют раствором Ag(I), а висмут – комплексоном III.
Для титрования раствора, содержащего 550 мг образца, требуется 14,50 мл 0,05000 М раствора комплексона III, а на титрование йодид-иона, содержащегося в 440 мг образца, затрачивается 23,25 мл 0,1000 М раствора Ag(I). Рассчитайте координационное число висмута в комплексе, если йодид-ионы являются лигандом.

11. Образец массой 0,3280 г, содержащий Pb, Zn, Cu, растворили
и перевели в мерную колбу на 500,00 см 3 . Определение вели в три этапа:
а) на титрование первой порции раствора объемом 10,00 см 3 , содержащего Pb, Zn, Cu, затрачено 37,50 см 3 0,0025 М раствора ЭДТА; б) во второй порции объемом 25,00 см 3 замаскировали Cu, а на титрование Pb и Zn израсходовано 27,60 см 3 ЭДТА; в) в третьей порции объемом 100,00 см 3 замаскировали Zn
и Cu, на титрование Pb затрачено 10,80 см 3 ЭДТА. Определите массовую долю Pb, Zn, Cu в образце.

Кривые титрования

В редоксметрии кривые титрования строят в координатах Е = f (C R ),
они иллюстрируют графическое изменение потенциала системы в процессе титрования. До точки эквивалентности потенциал системы рассчитывается по отношению концентраций окисленной и восстановленной форм определяемого вещества (потому что до точки эквивалентности одна из форм титранта практически отсутствует), после точки эквивалентности – по отношению концентраций окисленной и восстановленной форм титранта (потому что после точки эквивалентности определяемое вещество оттитровано практически полностью).

Потенциал в точке эквивалентности определяется по формуле

, (26)

где – число электронов, участвующих в полуреакциях;

– стандартные электродные потенциалы полуреакций.

На рис. 10 представлена кривая титрования раствора щавелевой кислоты H 2 C 2 O 4 раствором перманганата калия KMnO 4 в кислой среде
( = 1 моль/дм 3).

Рис. 10. Кривая титрования 100,00 см 3 раствора щавелевой

кислоты H 2 C 2 O 4 с С 1/ z = 0,1000 моль/дм 3 раствором перманганата

калия KMnO 4 с С 1/ z = 0,1000 моль/дм 3 при =1 моль/дм 3

Потенциал полуреакции MnO 4 - + 5e + 8H + → Mn 2+ + 4H 2 O зависит от рН среды, так как в полуреакции участвуют ионы водорода.

Перманганатометрия

Титрантом является раствор перманганата калия KMnO 4 , являющийся сильным окислителем. Основное уравнение:

MnO 4 - +8H + + 5e = Mn 2+ + 4H 2 O, =+1,51 В.

М 1/ z (KMnO 4)= г/моль.

В слабокислых, нейтральных и слабощелочных средах вследствие меньшего окислительно-восстановительного потенциала перманганат-ион восстанавливается до Mn +4 .

MnO 4 - +2H 2 O + 3e = MnО 2 ¯ + 4OH - , = +0,60 В.

М 1/ z (KMnO 4)= 158,03/3= 52,68 г/моль.

В щелочной среде раствор перманганата калия восстанавливается
до Mn +6 .

MnO 4 - + 1e = MnO 4 2- , = +0,558 В.

М 1/ z (KMnO 4)= 158,03 г/моль.

Для исключения побочных реакций титрование перманганатом калия проводят в кислой среде, которую создают серной кислотой. Соляную кислоту для создания среды применять не рекомендуется, так как перманганат калия способен окислять хлорид-ион.

2Cl - – 2e = Cl 2 , = +1,359 В.

Наиболее часто перманганат калия применяют в виде раствора
с молярной концентрацией эквивалента ~ 0,05 – 0,1 моль/дм 3 . Он не является первичным стандартом в силу того, что водные растворы перманганата калия способны окислять воду и органические примеси в ней:

4MnO 4- + 2H 2 O = 4MnО 2 ¯+ 3O 2 ­+ 4OH -

Разложение растворов перманганата калия ускоряется в присутствии диоксида марганца. Поскольку диоксид марганца является продуктом разложения перманганата, этот осадок оказывает автокаталитический эффект на процесс разложения.

Твердый перманганат калия, применяемый для приготовления растворов, загрязнен диоксидом марганца, поэтому приготовить раствор из точной навески нельзя. Для того чтобы получить достаточно устойчивый раствор перманганата калия, его после растворения навески KMnO 4 в воде оставляют в темной бутыли на несколько дней (или кипятят), а затем отделяют MnO 2 ¯ фильтрованием через стеклянный фильтр (применять бумажный фильтр нельзя, так как он реагирует с перманганатом калия, образуя диоксид марганца).

Окраска раствора перманганата калия настолько интенсивна,
что индикатор в этом методе не требуется. Для того чтобы придать заметную розовую окраску 100 см 3 воды, достаточно 0,02 – 0,05 см 3 раствора KMnO 4
с молярной концентрацией эквивалента 0,1 моль/дм 3 (0,02 М). Окраска перманганата калия в конечной точке титрования неустойчивая и постепенно обесцвечивается в результате взаимодействия избытка перманганата
с ионами марганца (II), присутствующими в конечной точке в относительно большом количестве:

2MnO 4 - + 3Mn 2+ + 2H 2 O « 5MnО 2 ¯ + 4H +

Стандартизацию рабочего раствора KMnO 4 проводят по оксалату натрия или щавелевой кислоте (свежеперекристаллизованной и высушенной при 105°С).

Используют растворы первичных стандартов с молярной концентрацией эквивалента С (½ Na 2 C 2 O 4) = 0,1000 или 0,05000 моль/л.

C 2 O 4 2- – 2e ® 2CO 2 , = -0,49 В

ТИТРОВАНИЕ

ТИТРОВАНИЕ , метод, применяемый при объемном анализе для определения концентрации СОЕДИНЕНИЯ в РАСТВОРЕ. Измерение количества, необходимого для завершения реакции с другим соединением. Раствор известной концентрации добавляется в отмеренных количествах из бюретки (градуированная стеклянная трубка) в отмеренный объем жидкости неизвестной концентрации, пока реакция не завершится (это покажет индикатор или электрохимический прибор). Добавленный объем позволяет вычислить неизвестную концентрацию.


Научно-технический энциклопедический словарь .

Синонимы :

Смотреть что такое "ТИТРОВАНИЕ" в других словарях:

    Прием объемного хим. анализа, состоящий в постепенном прибавлении раствора какого–либо вещества с известным титром к раствору др. вещества, концентрацию которого необходимо установить. Т. широко используется в физиологии микроорганизмов для… … Словарь микробиологии

    Субтитрирование, микротитрование, субтитрование, титрирование Словарь русских синонимов. титрование сущ., кол во синонимов: 4 микротитрование (1) … Словарь синонимов

    ТИТРОВАНИЕ, определение содержания какого либо вещества путем постепенного смешения анализируемого раствора (например, кислоты) с контролируемым количеством реагента (например, щелочи). Конечная точка титрования (завершение химической реакции)… … Современная энциклопедия

    Постепенное прибавление контролируемого количества реагента (напр., кислоты) к анализируемому раствору (напр., щелочи) в титриметрическом анализе … Большой Энциклопедический словарь

    ТИТРОВАНИЕ, титрования, мн. нет, ср. (спец.). Действие по гл. титровать. «Ширшов открыл свою лабораторию, чтобы прогреть ее для титрования.» Папанин. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    Процесс добавления раствора известной концентрации (титрованного) к раствору анализируемого вещества до установления эквивалентных соотношений, реагирующих между собой веществ. Эквивалентная точка фиксируется с помощью индикаторов. Применяется… … Геологическая энциклопедия

    титрование - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN titration … Справочник технического переводчика

    Титрование - Основной прием титриметрического анализа, заключающийся в постепенном прибавлении титрованного раствора из бюретки к исследуемому раствору до достижения эквивалентности Источник … Словарь-справочник терминов нормативно-технической документации

    ТИТРОВАНИЕ - основной приём титриметрического (см.), состоящий в постепенном прибавлении раствора реактива известной концентрации из бюретки к анализируемому раствору до окончания реакции (см.). По объёму израсходованного титрованного раствора вычисляют… … Большая политехническая энциклопедия

    Постепенное прибавление контролируемого количества реагента (например, кислоты) к анализируемому раствору (например, щёлочи) в титриметрическом анализе. * * * ТИТРОВАНИЕ ТИТРОВАНИЕ, постепенное прибавление контролируемого количества реагента… … Энциклопедический словарь

Книги

  • Аналитическая химия. Окислительно-восстановительное титрование. Учебное пособие для СПО , Подкорытов А.Л. Категория: Разное Серия: Профессиональное образование Издатель: ЮРАЙТ , Производитель: ЮРАЙТ ,
  • Аналитическая химия. Окислительно-восстановительное титрование. Учебное пособие для вузов , Подкорытов А.Л. , Учебное пособие освещает вопросы теории методов окислительно-восстановительного титрования, взаимосвязь теоретических основ методов с их практическим применением. Большое внимание уделено… Категория: Разное Серия: Университеты России Издатель: ЮРАЙТ , Производитель:
Поделиться