Что выполняет рнк. Строение рнк

В отличие от молекул ДНК рибонуклеиновые кислоты представлены одной полинуклеотидной цепью, которая состоит из четырех разновидностей нуклеотидов, содержащих сахар, рибозу, фосфат и одно из четырех азотистых оснований - аденин, гуанин, урацил или цитозин. РНК синтезируется на молекулах ДНК при помощи ферментов РНК-полимераз с соблюдением принципа комплементарности и антипараллельности, причем аденину ДНК в РНК комплементарен урацил. Все многообразие РНК, действующих в клетке, можно разделить на три основных вида: мРНК, тРНК, рРНК.

Матричная, или информационная, РНК (мРНК, или иРНК).

Транскрипция. Для того чтобы синтезировать белки с заданными свойствами, к месту их построения поступает «инструкция» о порядке включения аминокислот в пептидную цепь. Эта инструкция заключена в нуклеотидной последовательности матричных, или информационных РНК (мРНК, иРНК), синтезируемых на соответствующих участках ДНК. Процесс синтеза мРНК называют транскрипцией . Синтез мРНК начинается с обнаружения РНК-полимеразой особого участка в молекуле ДНК, который указывает место начала транскрипции - промотора.

После присоединения к промотору РНК-полимераза раскручивает прилежащий виток спирали ДНК. Две цепи ДНК в этом месте расходятся, и на одной из них фермент осуществляет синтез мРНК. Сборка рибонуклеотидов в цепь происходит с соблюдением их комплементарности нуклеотидам ДНК, а также антипараллельно по отношению к матричной цепи ДНК. В связи с тем, что РНК-полимераза способна собирать полинуклеотид лишь от 5"-конца к 3"-концу, матрицей для транскрипции может служить только одна из двух цепей ДНК, а именно та, которая обращена к ферменту своим 3"-концом (3" → 5"). Такую цепь называют кодогенной. Антипараллельность соединения двух полинуклеотидных цепей в молекуле ДНК позволяет РНК-полимеразе правильно выбрать матрицу для синтеза мРНК. Продвигаясь вдоль кодогенной цепи ДНК, РНК-полимераза осуществляет постепенное точное переписывание информации до тех пор, пока она не встречает специфическую нуклеотидную последовательность - терминатор транскрипции. В этом участке РНК-полимераза отделяется как от матрицы ДНК, так и от вновь синтезированной мРНК. Фрагмент молекулы ДНК, включающий промотор, транскрибируемую последовательность и терминатор, образует единицу транскрипции-транскриптон. В процессе синтеза, по мере продвижения РНК-полимеразы вдоль молекулы ДНК, пройденные ею одноцепочечные участки ДНК вновь объединяются в двойную спираль. Образуемая в ходе транскрипции мРНК содержит точную копию информации, записанной в соответствующем участке ДНК. Тройки рядом стоящих нуклеотидов мРНК, шифрующие аминокислоты, называют кодонами. Последовательность кодонов мРНК шифрует последовательность аминокислот в пептидной цепи. Кодонам мРНК соответствуют определенные аминокислоты. Матрицей для транскрипции мРНК служит кодогенная цепь ДНК, обращенная к ферменту своим 3"-концом

Транспортная РНК (тРНК). Трансляция. Важная роль в процессе использования наследственной информации клеткой принадлежит транспортной РНК (тРНК). Доставляя необходимые аминокислоты к месту сборки пептидных цепей, тРНК выполняет функцию трансляционного посредника. Молекулы тРНК представляют собой полинуклеотидные цепи, синтезируемые на определенных последовательностях ДНК. Они состоят из относительно небольшого числа нуклеотидов -75-95. В результате комплементарного соединения оснований, которые находятся в разных участках полинуклеотидной цепи тРНК, она приобретает структуру, напоминающую по форме лист клевера. В ней выделяют четыре главные части, выполняющие различные функции. Акцепторный «стебель» образуется двумя комплементарно соединенными концевыми частями тРНК. Он состоит из семи пар оснований. 3"-конец этого стебля несколько длиннее и формирует одноцепочечный участок, который заканчивается последовательностью ЦЦА со свободной ОН-группой. К этому концу присоединяется транспортируемая аминокислота. Остальные три ветви представляют собой комплементарно спаренные последовательности нуклеотидов, которые заканчиваются неспаренными участками, образующими петли. Средняя из этих ветвей - антикодоновая - состоит из пяти пар нуклеотидов и содержит в центре своей петли антикодон. Антикодон - это три нуклеотида, комплементарные кодону мРНК, который шифрует аминокислоту, транспортируемую данной тРНК к месту синтеза пептида. Между акцепторной и антикодоновой ветвями располагаются две боковые ветви. В своих петлях они содержат модифицированные основания - дигидроуридин (D-петля) и триплет TψC, где \у - псевдоуриаин (Т^С-петля). Между аитикодоновой и Т^С-ветвями содержится дополнительная петля, включающая от 3-5 до 13-21 нуклеотидов. В целом различные виды тРНК характеризуются определенным постоянством нуклеотидной последовательности, которая чаще всего состоит из 76 нуклеотидов. Варьирование их числа связано главным образом с изменением количества

нуклеотидов в дополнительной петле. Комплементарные участки, поддерживающие структуру тРНК, как правило, консервативны. Первичная структура тРНК, определяемая последовательностью нуклеотидов, формирует вторичную структуру тРНК, имеющую форму листа клевера. В свою очередь, вторичная структура обусловливает трехмерную третичную структуру, для которой характерно образование двух перпендикулярно расположенных двойных спиралей. Одна из них образована акцепторной и ТψС-ветвями, другая -антикодоновой и D-ветвями. На конце одной из двойных спиралей располагается транспортируемая аминокислота, на конце другой - антикодон. Эти участки оказываются максимально удаленными друг от друга. Стабильность третичной структуры тРНК поддерживается благодаря возникновению дополнительных водородных связей между основаниями полинуклеотидной цепи, находящимися в разных ее участках, но пространственно сближенных в третичной структуре. Различные виды тРНК имеют сходную третичную структуру, хотя и с некоторыми вариациями. Одной из особенностей тРНК является наличие в ней необычных оснований, возникающих вследствие химической модификации уже после включения нормального основания в полинуклеотидную цепь. Эти измененные основания обусловливают большое структурное многообразие тРНК при общем плане их строения. Наибольший интерес представляют модификации оснований, формирующих антикодон, которые влияют на специфичность его взаимодействия с кодоном. Например, нетипичное основание инозин, иногда стоящий в 1-м положении антикодона тРНК, способен комплементарно соединяться с тремя разными третьими основаниями кодона мРНК - У, Ц и А. Установлено также существование нескольких видов тРНК, способных соединяться с одним и тем же кодоном. В результате в цитоплазме клеток встречается не 61 (по количеству кодонов), а около 40 различных молекул тРНК. Этого количества достаточно, чтобы транспортировать 20 разных аминокислот к месту сборки белка. Наряду с функцией точного узнавания определенного кодона в мРНК молекула тРНК осуществляет доставку к месту синтеза пептидной цепи строго определенной аминокислоты, зашифрованной с помощью данного кодона. Специфическое соединение тРНК со «своей» аминокислотой протекает в два этапа и приводит к образованию соединения, называемого аминоацил-тРНК.

Присоединение аминокислоты к соответствующей тРНК:

I-1-й этап, взаимодействие аминокислоты и АТФ с выделением пирофосфата;

II-2-й этап, присоединение аденилировашюй аминокислоты к 3"-концу РНК

На первом этапе аминокислота активируется, взаимодействуя своей карбоксильной группой с АТФ. В результате образуется адепилированная аминокислота. На втором этапе это соединение взаимодействует с ОН-группой, находящейся на 3"-конце соответствующей тРНК, и аминокислота присоединяется к нему своей карбоксильной группой, высвобождая при этом АМФ. Таким образом, этот процесс протекает с затратой энергии, получаемой при гидролизе АТФ до АМФ. Специфичность соединения аминокислоты и тРНК, несущей соответствующий антикодон, достигается благодаря свойствам фермента аминоацил-тРНК-синтетазы. В цитоплазме существует целый набор таких ферментов, которые способны к пространственному узнаванию, с одной стороны, своей аминокислоты, а с другой - соответствующего ей антикодона тРНК. Наследственная информация, «записанная» в молекулах ДНК и «переписанная» на мРНК, расшифровывается в ходе трансляции благодаря двум процессам специфического узнавания молекулярных поверхностей. Сначала фермент аминоацил-тРНК-синтетаза обеспечивает соединение тРНК с транспортируемой ею аминокислотой. Затем аминоацил тРНК комплементарно спаривается с мРНК благодаря взаимодействию антикодона с кодоном. С помощью системы тРНК язык нуклеотидной цепи мРНК. транслируется в язык аминокислотной последовательности пептида. Рибосомная РНК (рРНК). Рибосомный цикл синтеза белка. Процесс взаимодействия мРНК и тРНК, обеспечивающий трансляцию информации с языка нуклеотидов на язык аминокислот, осуществляется на рибосомах. Последние представляют собой сложные комплексы рРНК и разнообразных белков, в которых первые образуют каркас. Рибосомные РНК являются не только структурным компонентом рибосом, но и обеспечивают связывание их с определенной нуклеотидной последовательностью мРНК. Этим устанавливаются начало и рамка считывания при образовании пептидной цепи. Кроме того, они обеспечивают взаимодействие рибосомы и тРНК. Многочисленные белки, входящие в состав рибосом наряду с рРНК, выполняют как структурную, так и ферментативную роль.

1. Матричная РНК переносит генетический код из ядра в цитоплазму, определяя таким образом синтез разнообразных белков.

2. Транспортная РНК переносит активированные аминокислоты к рибосомам для синтеза полипептидных молекул.

3. Рибосомная РНК в комплексе примерно с 75 разными белками формирует рибосомы - клеточные органеллы, на которых происходит сборка полипептидных молекул.

4. Малые ядерные РНК (интроны) Учавствует в сплайсинге.

5. Малые цитоплазмотические РНК

6. мякРНК. Она же малая ядрышковая. В ядрышках клеток эукариотов.

7. РНК вирусов

8. РНК вироидов

После полиаденилирования мРНК подвергается сплайсингу, в ходе процессе которого удаляются интроны (участки, которые не кодируют белки), а экзоны (участки, кодирующие белки) сшиваются и образуют единую молекулу . Сплайсинг катализируется крупным нуклеопротеидным комплексом - сплайсосомой, состоящей из белков и малых ядерных РНК. Многие пре-мРНК могут быть подвергнуты сплайсингу разными путями, при этом образуются разные зрелые мРНК, кодирующие разные последовательности аминокислот (альтернативный сплайсинг).

Коротко: сплайсинг это когда уходят интроны которые ничего не кодируют и из экзонов фомируется зрелая молекула, способная кодировать белок.

Альтернативный сплайсинг-из одной молекулы пре-иРНК можно получить различные белки. То есть мы имеем дело с вариациями выпадания интронов и различным сшиванием экзонов.

Рибозимы

Молекулы РНК, обладающие ферментативной активностью (как правило, свойством автокатализa)

Регуляция экспрессии генов с помощью антисмысловых РНК характеризуется высокой специфичностью. Это обусловлено большой точностью процесса РНК-РНК-гибридизации, основанной на комплементарном взаимодействии друг с другом протяженных последовательностей нуклеотидов.

Однако сами по себе антисмысловые РНК не инактивируют необратимо мРНК-мишени, и для подавления экспрессии соответствующих генов требуются высокие (по крайней мере, эквимолярные по отношению к мРНК) внутриклеточные концентрации антисмысловых РНК. Эффективность действия антисмысловых РНК резко повысилась после того, как в их состав были введены молекулы рибозимов - коротких последовательностей РНК, обладающих эндонуклеазной активностью. Известно множество других ферментативных активностей, ассоциированных с РНК. Поэтому рибозимами в широком смысле называют молекулы РНК, обладающие любой ферментативной активностью.

На модельных системах опробован РНК-овый вариант подавления ВИЧ- инфекции. Для этой цели используется необычное свойство некоторых молекул РНК - их способность разрушать другие виды РНК. Американцы Т. Чех и С. Альтман за это открытие получили в 1989 году Нобелевскую премию. Считалось, что все биохимические реакции в организме происходят благодаря высокоэффективным специфическим катализаторам, которыми служат белки - ферменты. Однако оказалось, что некоторые виды РНК, подобно белкам, обладают высокоспецифической каталитической активностью. Эти РНК назвали рибозимами.

Рибозимы содержат внутри себя антисмысловые участки и участки, осуществляющие ферментативную реакцию. Т.е. они не просто присоединяются к мРНК, а еще и разрезают ее. Суть приема подавления ВИЧ-инфекции с помощью рибозимов изображена на рис. 32 . Присоединяясь к комплементарной РНК-мишени, рибозим расщепляет эту РНК, результатом чего является прекращение синтеза белка, кодируемого РНК-мишенью. Если такой мишенью для рибозима будет вирусная РНК, то рибозим ее "испортит", и соответствующий вирусный белок образовываться не будет. В результате вирус прекратит свое размножение в клетке. Такой подход применим и к некоторым другим патологиям человека, например, для лечения рака.


Похожая информация.


Молекулярная биология является одним из важнейших разделов биологических наук и подразумевает детализированное изучение клеток живых организмов и их составляющих. В сферу ее исследований входит множество жизненно важных процессов, таких как рождение, дыхание, рост, смерть.


Бесценным открытием молекулярной биологии стала расшифровка генетического кода высших существ и определение способности клетки хранить и передавать генетическую информацию. Основная роль в этих процессах принадлежит нуклеиновым кислотам, которых в природе различают два вида – ДНК и РНК. Что представляют собой эти макромолекулы? Из чего они состоят и какие биологические функции выполняют?

Что такое ДНК?

ДНК расшифровывается как дезоксирибонуклеиновая кислота. Она представляет собой одну из трех макромолекул клетки (две другие – белки и рибонуклеиновая кислота), которая обеспечивает сохранение и передачу генетического кода развития и деятельности организмов. Простыми словами, ДНК – носитель генетической информации. В ее составе содержится генотип индивида, который обладает способностью к самовоспроизводству и передает информацию по наследству.

Как химическое вещество кислота была выделена из клеток еще в 1860-х годах, однако вплоть до середины XX столетия никто и не предполагал, что она способна хранить и передавать информацию.


Долгое время считалось, что эти функции выполняют белки, однако в 1953 году группа биологов сумела значительно расширить понимание сути молекулы и доказать первостепенную роль ДНК в сохранении и передаче генотипа. Находка стала открытием века, а ученые получили за свою работу Нобелевскую премию.

Из чего состоит ДНК?

ДНК является крупнейшей из биологических молекул и представляет собой четыре нуклеотида, состоящих из остатка фосфорной кислоты. В структурном отношении кислота достаточно сложная. Ее нуклеотиды соединяются между собой длинными цепями, которые объединяются попарно во вторичные структуры – двойные спирали.

ДНК имеет свойство повреждаться радиацией или различными окисляющими веществами, в силу чего в молекуле происходит процесс мутации. Функционирование кислоты напрямую зависит от ее взаимодействия с еще одной молекулой – белками. Вступая с ними во взаимосвязь в клетке, она образует вещество хроматин, внутри которого осуществляется реализация информации.

Что такое РНК?

РНК – это рибонуклеиновая кислота, содержащая в себе азотистые основания и остатки фосфорных кислот.


Существует гипотеза, что она является первой молекулой, получившей способность к самовоспроизводству еще в эпоху формирования нашей планеты – в добиологических системах. РНК и сегодня входит в геномы отдельных вирусов, выполняя в них ту роль, которую у высших существ играет ДНК.

Рибонуклеиновая кислота состоит из 4-х нуклеотидов, но вместо двойной спирали, как в ДНК, ее цепочки соединяются одинарной кривой. В нуклеотидах содержится рибоза, принимающая активное участие в обмене веществ. В зависимости от способности кодировать белок РНК делятся на матричную и некодирующие.

Первая выступает своего рода посредником в передаче закодированной информации рибосомам. Вторые не могут кодировать белки, но обладают другими возможностями – трансляцией и лигированием молекул.

Чем ДНК отличается от РНК?

По своему химическому составу кислоты очень схожи друг с другом. Обе относятся к линейным полимерам и являют собой N-гликозид, созданный из остатков пятеуглеродного сахара. Разница между ними в том, что сахарный остаток РНК – это рибоза, моносахарид из группы пентоз, легко растворяющийся в воде. Сахарный остаток ДНК – это дезоксирибоза, или производная рибозы, имеющая несколько иную структуру.


В отличие от рибозы, формирующей кольцо из 4 атомов углерода и 1 атома кислорода, в дезоксирибозе второй атом углерода замещается водородом. Еще одно отличие между ДНК и РНК заключается в их размерах – более крупная. Кроме этого, среди четырех нуклеотидов, входящих в ДНК, один представляет собой азотистое основание под названием тимин, тогда как в РНК вместо тимина присутствует его разновидность – урацил.

РНК

Строение молекул РНК во многом сходно со строением молекул ДНК. Однако имеется и ряд существенных отличий. В молекуле РНК вместо дезоксирибозы в состав нуклеотидов входит рибоза. Вместо тимидилового нуклеотида (Т) входит уридиловый (У). Главное отличие от ДНК состоит в том, что молекула РНК представляет собой одну цепь. Однако ее нуклеотиды способны образовывать водородные связи между собой (например, в молекулах тРНК, рРНК), но в этом случае речь идет о внутрицепочечном соединении комплементарных нуклеотидов.

Цепочки РНК значительно короче ДНК.

Виды РНК

В клетке существует несколько видов РНК, которые различаются по величине молекул, структуре, расположению в клетке и функциям.

Информационная (матричная) РНК - мРНК - наиболее разнородная по размерам и структуре. мРНК представляет собой незамкнутую полинуклеотидную цепь. Она синтезируется в ядре при участии фермента РНК-полимеразы по принципу комплементарности участку ДНК, отвечающего за кодирование данного белка. мРНК выполняет важнейшую функцию в клетке. Она служит в качестве матриц для синтеза белков, передавая информацию об их структуре с молекул ДНК. Каждый белок клетки кодируется специфичной ему мРНК.

Рибосомная РНК - рРНК . Это одноцепочечные нуклеиновые кислоты, которые в комплексе с белками образуют рибосомы - органеллы, на которых происходит синтез белка. Информация о структуре рРНК закодирована в участках ДНК, расположенных в области вторичной перетяжки хромосом. На долю рРНК приходится 80 % всей РНК клетки, поскольку клетки содержат большое количество рибосом. рРНК обладают сложной вторичной и третичной структурой, образуя петли на комплементарных участках, что приводит к самоорганизации этих молекул в сложное по форме тело. В состав рибосом входят 3 типа рРНК - у прокариот и 4 типа рРНК - у эукариот.

Транспортная (трансферная) РНК - тРНК . Молекула тРНК состоит в среднем из 80 нуклеотидов. Содержание тРНК в клетке - около 15 % всей РНК. Функция тРНК - перенос аминокислот к месту синтеза белка и участие в процессе трансляции. Число различных типов тРНК в клетке невелико (около 40). Все они имеют сходную пространственную организацию. Благодаря внутрицепочечным водородным связям молекула тРНК приобретает характерную вторичную структуру, называемую клеверным листом .

Трехмерная же модель тРНК выглядит несколько иначе. В тРНК выделяют четыре петли: акцепторную (служит местом присоединения аминокислоты), антикодоновую (узнает кодон в мРНК в процессе трансляции), две боковые.

Нуклеиновые кислоты - высокомолекулярные соединения со строго определённой линейной последовательностью мономеров. Структура ДНК и РНК - способ «записи информации», обеспечивающий формирование в организме двух информационных потоков. Один из потоков осуществляет воспроизведение информации, заключённой в молекулах ДНК. Удвоение молекул ДНК называют «репликация». В результате этого процесса и последующего деления дочерние клетки наследуют геном родительской клетки, в котором содержится полный набор генов, или «инструкций» о строении РНК и всех белков организма.

Второй поток информации реализуется в процессе жизнедеятельности клетки. В этом случае происходит «считывание», или транскрипция, генов в форме полинуклеотидных последовательностей мРНК и использование их в качестве матриц для синтеза соответствующих белков. В последнем случае осуществляется «перевод» (трансляция) информации, заключённой в мРНК, на «язык» аминокислот. Этот поток информации от ДНК через РНК на белок получил название «центральная догма биологии». Он характерен для всех живых организмов, за исключением некоторых РНК-содержащих вирусов.

Исправление ошибок, возникающих в структуре ДНК под воздействием факторов внешней и внутренней среды, осуществляет ещё один матричный синтез - репарация. Он является вариантом ограниченной репликации и восстанавливает первоначальную структуру ДНК, используя в качестве матрицы участок неповреждённой нити ДНК. При размножении РНК-содержащих вирусов в клетках эукариотических организмов новые молекулы ДНК могут синтезироваться с помощью процесса, в ходе которого РНК служит матрицей для синтеза комплементарной ДНК, которая может включаться в геном высших организмов (обратная транскрипция).

Молекулы дезоксирибонуклеиновых кислот представляют собой длинные цепочки, содержащие сотни нуклеотидов. Каждый нуклеотид состоит из пуринового или пиримидинового основания, молекулы 2-дезоксирибозы и фосфорной кислоты. Пуриновыми основаниями являются аденин или гуанин, пиримидиновыми - цитозин или тимин.


Рис.1

Полинуклеотид имеет сахаро-фосфатный остов, а пуриновые и пиримидиновые основания присоединены к остатку сахара по положению 1 (атом углерода альдегидной группы). Так как дезоксирибоза не имеет гидроксильной группы в положении 2, фосфорная кислота связывает углерод С-3 одного сахарного остатка с углеродом С-5 следующего сахарного остатка.

Пуриновые основания А - аденин, Г - гуанин.

Пиримидиновые основания Т - тимин, Ц - цитозин.

ДНК существует в ядрах клеток в виде спаренных нитей, закрученных в двойную спираль (рис. 2). Каждое пуриновое или пиримидиновое основание направлено внутрь спирали по направлению к ее оси и связано водородной связью с другим пуриновым или пиримидиновым основанием, находящимся на другой нити. Пуриновые основания всегда образуют водородную связь с пиримидиновыми основаниями, и наоборот. При этом вследствие донорно-акцепторной природы групп, образующих водородную связь, аденин всегда образует водородную связь с тимином, а гуанин - с цитозином. Следовательно, число остатков аденина всегда равно числу остатков тимина, а число гуаниновых остатков всегда равно числу цитозиновых остатков.


Рис. 2. Структура ДНК*. а - двойная спираль; б - спаривание оснований между нитями


Рис.3

Основания в ДНК связываются посредством водородных связей. Водородные связи пары аденин-цитозин не столь стабильны, как связи пары аденин-тимин. Для того чтобы аденин и цитозин могли образовать водородные связи, необходимо, чтобы аминогруппа аденина, находящаяся в положении 6, претерпела таутомерный переход * в иминогруппу, как это показано ниже на диаграмме. Но эта конформация аденина опять не является стабильной.

* (Таутомеризадия - это процесс изомеризации, при котором протон перемещается от атома 1 к атому 3. В случае аденина в этот процесс включены следующие структуры:


Рис.4

Следовательно, образование пары А-Т будет предпочтительнее образования пары А-Ц. Аналогичный подход можно использовать, чтобы показать, почему пара гуанин-цитозин предпочтительнее пары гуанин-тимин.

Строгое требование спаривания оснований важно потому, что оно обеспечивает механизм точного удвоения пары нитей. ДНК удваивается перед делением клетки, чтобы снабдить каждую из дочерних клеток полным набором молекул ДНК. Это происходит путем разрыва водородных связей между цепями и затем образования новых водородных связей с новыми нуклеотидными партнерами: аденина с тимином и гуанина с цитозином (рис. 5). Затем новые нуклеотиды образуют между собой сахаро-фосфатные связи, создавая новую цепь. Результатом является точное воспроизведение исходных спаренных цепей. Это и есть молекулярная основа наследственности. Любая ошибка в процессе удвоения вызывает мутацию.

Рис.5. Удвоение двухцепочечной молекулы ДНК

Процесс репликации ДНК более понятен, чем процесс синтеза молекулы мРНК. Основной тайной в синтезе мРНК является тот факт, что на каждой двухцепочечной молекуле ДНК синтезируется только одна нить РНК. Единственная образующаяся молекула мРНК является точной копией одной из цепей ДНК, но не другой цепи. Затем мРНК выходит из ядра и прикрепляется к рибосоме * .

* (Рибосомы - это большие сложноорганизованные частицы в цитоплазме. Они представляют собой глобулярные структуры, богатые белком и РНК, и являются местом синтеза белка в клетке. )

Молекула РНК подобна молекуле ДНК, за исключением того, что РНК содержит рибозу вместо дезоксирибозы и основание урацил вместо тимина (урацил является деметилированным тимином). Как и тимин, урацил всегда образует пару с аденином.


Рис.6

Остов структур ДНК и РНК одинаков, т. е. остатки фосфорной кислоты связывают положение 3 одной молекулы сахара с положением 5 другой молекулы сахара. Важным последствием наличия гидроксильной группы в положении 2 в остатке рибозы РНК является то, что она делает РНК значительно более чувствительной к мягкому щелочному гидролизу, чем ДНК. Причиной этого является участие гидроксила в положении 2 в щелочном гидролитическом расщеплении РНК.


Рис.7

В результате принципа комплементарного спаривания оснований молекула РНК точно отражает последовательность оснований в молекуле ДНК. Так, мРНК содержит остатки аденина там, где ДНК содержит тимин, остатки цитозина там, где ДНК содержит гуанин, гуанин там, где ДНК содержит цитозин, и остатки урацила там, где ДНК содержит аденин. Но как это трансформируется в специфическую последовательность аминокислотных остатков молекулы белка? Это и есть самая интересная часть загадки.

Последовательность оснований в мРНК должна каким-то образом контролировать последовательность соединения аминокислот при образовании молекулы белка.

Информационная РНК содержит четыре типа оснований, а белок обычно содержит двадцать различных типов аминокислот. Поэтому отдельное основание не может контролировать положение определенной аминокислоты в белковой цепи, так как при этом четыре основания могли бы контролировать только четыре аминокислоты. Точно так же комбинации двух соседних оснований максимально могли бы контролировать шестнадцать аминокислот, так как возможны только шестнадцать различных комбинаций соседних оснований (см. ниже). (Комбинация АЦ отличается от комбинации ЦА вследствие направленности 3,5-диэфирной связи остатка фосфорной кислоты.)

Для того чтобы можно было осуществлять специфический контроль последовательности двадцати аминокислот, необходимо сочетание по крайней мере трех оснований информационной РНК, которая дает 64 возможные комбинации. Эти триплеты оснований на информационной РНК (называемые кодонами)


Рис.8

действуют как специфические места посадки для комплементарных триплетов, расположенных на молекулах тРНК * (антикодоны). Специфичность стыковки кодона и антикодона обусловливается специфичностью образования водородных связей между аденином и урацилом и между цитозином и гуанином. Комплементарные триплеты оснований тРНК находятся в так называемой антикодоновой петле вблизи середины цепи тРНК, а части цепи, не входящие в эту петлю, складываются, образуя двойную спираль по типу ДНК. Один из концов цепи всегда немного длиннее другого, и именно этот свободный конец несет аминокислоту. Прежде чем присоединиться к специфической молекуле тРНК, аминокислота активируется путем ферментативной реакции с АТФ, образуя связь между аминокислотой и аденозинмонофосфатом (АК-АМФ). Вызывает удивление тот факт, что этот свободный конец тРНК всегда имеет одну и ту же последовательность концевых оснований (ЦЦА) независимо от того, какая аминокислота находится на конце. (Аминокислота присоединяется к концевой рибозе через эфирную связь.) Ясно, что связывающий триплет должен каким-то образом контролировать выбор аминокислоты, присоединяемой к концу молекулы, однако, как это осуществляется, остается пока загадкой.

* (В ходе белкового синтеза в клетке тРНК оказывается связанной с мРНК, которая временно прикреплена к рибосоме (см. рис. 3.3). )


Рис.9

Другой загадкой, которая до недавнего времени оставалась неразрешенной, является проблема выбора отдельного "верного" триплета из данной последовательности оснований. Например, последовательность АЦГУ содержит два триплета - АЦГ и ЦГУ. Только один из них может быть "верным" триплетом, соответствующим определенной аминокислоте, которая должна войти в белок, запрограммированный данной мРНК. Если же начать синтез с выбора "неверного" триплета, то это приведет к непрерывной последовательности "неверных" триплетов, а следовательно, все аминокислоты будут "неверными", что будет означать "неверный" белок.

Однако таких ошибок в природе не происходит, и в конце 50-х годов Ф. Крик, Дж. Гриффит и Л. Оргел предложили остроумное объяснение этого явления. Принимая, что аминокислотный код основывается на последовательности триплетов (напоминающих трехбуквенные символы), они предположили, что код является неперекрывающимся. Это означает, что в гипотетическом регулярном полинуклеотиде УГАУГАУГА только один из трех триплетов (УГА ГАУ или АУГ) имеет какой-то "смысл". Два других являются "бессмысленными", так как не соответствуют никаким комплементарным триплетам на тРНК, и, следовательно, никакие тРНК не будут спариваться с этими триплетами.

Рассуждая далее, они считали, что если это верно, триплеты ААА, ЦЦЦ, ГГГ и УУУ не могли бы быть настоящими триплетами, потому что повторение любого из них может вызвать перекрывание, а следовательно, и неверное начало синтеза белка. Таким образом, число допустимых комбинаций трех оснований РНК уменьшается от 64 до 60. Далее они полагали, что из этих 60 комбинаций две трети должны быть бессмысленны, чтобы избежать перекрывания.


Рис.10 Такой перекрывающийся выбор триплета приводил бы к различным последовательностям аминокислот в белке

Тогда только одна треть из 60 будет "истинными" триплетами. Это число (двадцать) точно соответствует числу различных аминокислот, найденных в белках. Хотя это предположение прекрасно соответствовало тому, что было известно в то время, оно оказалось неверным. Последующая работа показала, что имеется более 20 значащих триплетов. Современные данные показывают, что выбор "верного" триплета происходит в результате преимущественного связывания тРНК на одном из концов мРНК, а не посреди ее цепи.

Как же определить, какой триплет послужит кодом для определенной аминокислоты? Наиболее прямым способом является приготовление синтетических полинуклеотидов с известной последовательностью оснований, использование этих молекул в качестве мРНК в белковом синтезе и затем определение последовательности аминокислот в белке.

Например, полинуклеотид, содержащий только один тип оснований, может быть получен из нуклеотидов (дифосфатов) и фермента, называемого полинуклеотидфосфорилазой, выделенного Очоа и Грюнберг-Манаго. Если основанием является урацил, синтетический полинуклеотид называется поли-У (УУУУУУУ...). В присутствии смеси молекул тРНК, ферментов и других компонентов клеток поли-У инициирует синтез полипептида, содержащего аминокислоты только одного вида - а именно полифенилаланин. Таким образом, ясно, что триплет УУУ является кодоном для фенилаланина.

Этот метод может быть распространен (и это было сделано Очоа и Ниренбергом) на кодоны со смешанными основаниями, Например, полимеризация урацила может быть инициирована динуклеотидом АУУУУУУ.... Этот полинуклеотид вызывает синтез полифенилаланина с одним остатком тирозина на конце. Следовательно, кодоном для аминокислоты тирозина должен быть триплет АУУ. В результате этой работы были составлены таблицы кодонов для всех двадцати аминокислот. Оказалось, что большинство аминокислот имеет более одного кодона.

Следовательно, согласно современным представлениям, каждый фермент синтезируется путем линейной последовательности реакций соединения аминокислот, начинающейся на одном конце мРНК и заканчивающейся на другом ее конце, где белковая цепь полностью освобождается. По мере образования очередной пептидной связи "отработанная" тРНК отходит от мРНК. Это позволяет свежим тРНК подносить аминокислоты и начинать синтез второй молекулы белка, не дожидаясь окончания синтеза первой молекулы (рис. 11).


Рис. 11. Изображение последовательности белкового синтеза . На этом рисунке АА обозначает аминокислоту; АТФ - аденозинтрифосфат; АМФ - аденозинмонофосфат; АА - АМФ - аденилат аминокислоты: тРНК - транспортную рибонуклеиновую кислоту; мРНК - информационную, или матричную, рибонуклеиновую кислоту, а, б и т. д. обозначают места связывания на рибосоме (тРНК), где происходит образование пептидной связи

три основных вида РНК: информационная (иРНК), или матричная (мРНК), рибосомная (рРНК), и транспортная (тРНК). Они различаются по величине молекул и функциям. Все типы РНК синтезируются на ДНК при участии ферментов - РНК-полимераз. Информационная РНК состав­ляет 2-3 % всей клеточной РНК, рибосомная - 80-85, транс­портная - около 15 %.

иРНК . она считывает наследст­венную информацию с участка ДНК и в форме скопиро­ванной последовательности азотистых оснований переносит ее в рибосомы, где происходит синтез определенного белка. Каждая из молекул иРНК по порядку расположения нуклеотидов и по размеру соответствует гену в ДНК, с которого она была транс­крибирована. В среднем иРНК содержит 1500 нуклеотидов (75- 3000). Каждый триплет (три нуклеотида) на иРНК называется кодоном. От кодона зависит, какая аминокислота встанет в дан­ном месте при синтезе белка.

(тРНК) обладает относительно невысокой молекулярной массой порядка 24-29 тыс. Д и содер­жит в молекуле от 75 до 90 нуклеотидов. До 10 % всех нуклеоти­дов тРНК приходится на долю минорных оснований, что, по-ви­димому, защищает ее от действия гидролитических ферментов.Роль тРНК заключается в том, что они переносят аминокис­лоты к рибосомам и участвуют в процессе синтеза белка. Каждая аминокислота присоединяется к определенной тРНК. Ряд ами­нокислот обладает более одной тРНК. К настоящему времени обнаружено более 60 тРНК, которые отличаются между собой первичной структурой (последовательностью оснований). Вто­ричная структура у всех тРНК представлена в виде клеверного листа с двухцепочным стеблем и тремя одноцепочными). На конце одной из цепей находится акцепторный участок - триплет ЦЦА, к аденину которого присоединяется специфическая аминокислота.

(рРНК) . Они содержат 120-3100 нуклеотидов. Рибосомная РНК накапливается в ядре, в ядрышках. В ядрышки из цитоплазмы транспортируются рибосомные белки, и там происходит спонтанное образование субчастиц рибосом путем объединения белков с соответствующими рРНК. Субчастицы рибосомы вместе или врозь транспортируются через поры ядерной мембраны в цитоплазму.Рибосомы представляют собой органеллы величиной 20- 30 нм. Они построены из двух субчастиц разного размера и формы. На определенных стадиях белкового синтеза в клетке происходит разделение рибосом на субчастицы. Рибосомная РНК служит как бы каркасом рибосом и способствует первоначальному связыванию иРНК с рибосомой в процессе биосинтеза белка.

Генетический код- свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

Свойства: 1) ге­нетический код триплетный (каждая аминокислота кодируется тремя нуклеотидами); 2) неперекрывающийся (соседние триплеты не имеют общих нуклеотидов); 3) вырожденный (за исключением метионина и триптофана все аминокислоты имеют более одного кодона); 4) универсальный (в основном одинаков для всех живых организмов); 5) в кодонах для одной аминокислоты первые два нуклеотида, как правило, одинаковы, а третий варьирует; 6) имеет линейный порядок считывания и характеризуется колине-арностью, т. е. совпадением порядка расположения кодонов в иРНК с порядком расположения аминокислот в синтезирующей­ся полипептидной цепи.

Существует три типа РНК: рибосомные, транспортные и информационные (матричные) рибонуклеиновые . Все по структуре, размеру молекул, и выполняемым функциям.

Чем характеризуются рибосомные РНК (рРНК)

Рибосомные РНК составляют 85% всех РНК клетки. Они синтезируются в ядрышке. Рибосомные РНК являются структурным компонентом рибосом и принимают непосредственное участие в биосинтезе белка.

Рибосомы – это органоиды клетки, состоящие из четырех рРНК и нескольких десятков белков. Их главная функция – синтез белка.

Зачем нужны транспортные РНК

Транспортные РНК (тРНК) – самые маленькие по размеру рибонуклеиновые кислоты клетки. Они составляют 10% всех клеточных РНК. Транспортные РНК образуются в ядре на ДНК и затем переходят в цитоплазму. Каждая тРНК переносит определенные аминокислоты к рибосомам, где они соединяются пептидными связями в особой последовательности, заданной матричной РНК.

В молекуле транспортной РНК есть два активных участка: триплет-антикодон и акцепторный конец. Акцепторный конец – это «посадочная площадка» для аминокислоты. Антикодон на другом конце молекулы представляет собой триплет нуклеотидов, комплементарный соответствующему кодону информационной РНК.

Каждой аминокислоте соответствует последовательность трех нуклеотидов – триплет. Нуклеотид – это мономер нуклеиновых кислот, состоящий из фосфатной группы, пентозы и азотистого основания.

Антикодон различен для тРНК, транспортирующих разные аминокислоты. В триплете закодирована информация именно о той аминокислоте, которая переносится данной молекулой.

Где синтезируются матричные РНК, и в чем их роль

Информационные, или матричные РНК (иРНК, мРНК) синтезируются на участке одной из двух цепочек ДНК под действием фермента РНК-полимеразы. Они составляют 5% РНК клетки. Последовательность азотистых оснований иРНК строго комплементарна последовательности оснований участка ДНК: аденину ДНК соответствует урацил иРНК, тимину – аденин, гуанину – цитозин и цитозину – гуанин.

Матричная РНК считывает наследственную информацию от хромосомных ДНК и переносит ее к рибосомам, где эта информация реализуется. В последовательности нуклеотидов иРНК зашифрована информация о структуре белка.

Молекулы РНК могут находиться в ядре, цитоплазме, рибосомах, митохондриях и пластидах. Из разных видов РНК складывается единая функциональная система, направленная посредством синтеза белка на реализацию наследственной информации.

Поделиться