Количество движения механической системы. Теорема об изменении количества движения механической системы

Состоящую из n материальных точек. Выделим из этой системы некоторую точку M j с массой m j . На эту точку, как известно, действуют внешние и внутренние силы .

Приложим к точке M j равнодействующую всех внутренних сил F j i и равнодействующую всех внешних сил F j e (рисунок 2.2). Для выделенной материальной точки M j (как для свободной точки) запишем теорему об изменении количества движения в дифференциальной форме (2.3):

Запишем аналогичные уравнения для всех точек механической системы (j=1,2,3,…,n) .

Рисунок 2.2

Сложим почленно все n уравнений:

∑d(m j ×V j)/dt = ∑F j e + ∑F j i , (2.9)

d∑(m j ×V j)/dt = ∑F j e + ∑F j i . (2.10)

Здесь ∑m j ×V j =Q – количество движения механической системы;
∑F j e = R e – главный вектор всех внешних сил, действующих на механическую систему;
∑F j i = R i =0 – главный вектор внутренних сил системы (по свойству внутренних сил он равен нулю).

Окончательно для механической системы получаем

dQ/dt = R e . (2.11)

Выражение (2.11) представляет собой теорему об изменении количества движения механической системы в дифференциальной форме (в векторном выражении): производная по времени от вектора количества движения механической системы равна главному вектору всех внешних сил, действующих на систему .

Проецируя векторное равенство (2.11) на декартовы оси координат, получаем выражения для теоремы об изменении количества движения механической системы в координатном (скалярном) выражении:

dQ x /dt = R x e ;

dQ y /dt = R y e ;

dQ z /dt = R z e , (2.12)

т.е. производная по времени от проекции количества движения механической системы на какую-либо ось равна проекции на эту ось главного вектора всех действующих на эту механическую систему внешних сил .

Умножая обе части равенства (2.12) на dt , получим теорему в другой дифференциальной форме:

dQ = R e ×dt = δS e , (2.13)

т.е. дифференциал количества движения механической системы равен элементарному импульсу главного вектора (сумме элементарных импульсов) всех внешних сил, действующих на систему .

Интегрируя равенство (2.13) в пределах изменения времени от 0 до t , получаем теорему об изменении количества движения механической системы в конечной (интегральной) форме (в векторном выражении):

Q — Q 0 = S e ,

т.е. изменение количества движения механической системы за конечный промежуток времени равно полному импульсу главного вектора (сумме полных импульсов) всех внешних сил, действующих на систему за тот же промежуток времени .

Проецируя векторное равенство (2.14) на декартовы оси координат, получим выражения для теоремы в проекциях (в скалярном выражении):

т.е. изменение проекции количества движения механической системы на какую-либо ось за конечный промежуток времени равно проекции на эту же ось полного импульса главного вектора (сумме полных импульсов) всех действующих на механическую систему внешних сил за тот же промежуток времени .

Из рассмотренной теоремы (2.11) – (2.15) вытекают следствия:

  1. Если R e = ∑F j e = 0 , то Q = const – имеем закон сохранения вектора количества движения механической системы: если главный вектор R e всех внешних сил, действующих на механическую систему, равен нулю, то вектор количества движения этой системы остается постоянным по величине и направлению и равным своему начальному значению Q 0 , т.е. Q = Q 0 .
  2. Если R x e = ∑X j e =0 (R e ≠ 0) , то Q x = const – имеем закон сохранения проекции на ось количества движения механической системы: если проекция главного вектора всех действующих на механическую систему сил на какую-либо ось равна нулю, то проекция на эту же ось вектора количества движения этой системы будет величиной постоянной и равной проекции на эту ось начального вектора количества движения, т.е. Q x = Q 0x .

Дифференциальная форма теоремы об изменении количества движения материальной системы имеет важные и интересные приложения в механике сплошной среды. Из (2.11) можно получить теорему Эйлера.

Рассмотрим систему, состоящую из материальных точек. Составим для этой системы дифференциальные уравнения движения (13) и сложим их почленно. Тогда получим

Последняя сумма по свойству внутренних сил равна нулю. Кроме того,

Окончательно находим

Уравнение (20) выражает теорему об изменении количества движения системы в дифференциальной форме: производная по времени от количества движения системы равна геометрической сумме всех действующих на систему внешних сил. В проекциях на координатные оси будет:

Найдем другое выражение теоремы. Пусть в момент времени количество движения системы равно а в момент становится равным . Тогда, умножая обе части равенства (20) на и интегрируя, получим

так как интегралы, стоящие справа, дают импульсы внешних сил.

Уравнение (21) выражает теорему об изменении количества движения системы в интегральной форме: изменение количества движения системы за некоторый промежуток времени равно сумме импульсов, действующих на систему внешних сил за тот же промежуток времени.

В проекциях на координатные оси будет:

Укажем на связь между доказанной теоремой и теоремой о движении центра масс. Так как , то, подставляя это значение в равенство (20) и учитывая, что получим , т. е. уравнение (16).

Следовательно, теорема о движении центра масс и теорема об изменении количества движения системы представляют собой, по существу, две разные формы одной и той же теоремы. В тех случаях, когда изучается движение твердого тела (или системы тел), можно в равной мере пользоваться любой из этих форм, причем уравнением (16) обычно пользоваться удобнее. Для непрерывной же среды (жидкость, газ) при решении задач обычно пользуются теоремой об изменении количества движения системы. Важные приложения эта теорема имеет также в теории удара (см. гл. XXXI) и при изучении реактивного движения (см. § 114).

Количество движения мерой механического движения, если механическое движение перейдет в механическое. Например, механическое движение бильярдного шара (рис. 22) до удара переходит в механическое движение шаров после удара. Для точки количество движения равно произведению .

Мерой действия силы в этом случае является импульс силы

. (9.1)

Импульс определяет действие силы за промежуток времени. Для материальной точки теорему об изменении количества движения можно использовать в дифференциальной форме
(9.2) или интегральной (конечной) форме
. (9.3)

Изменение количества движения материальной точки за какой-то промежуток времени равно импульсу всех сил, приложенных к точке за то же время.

Рисунок 22

При решении задач теорема (9.3) чаще используется в проекциях на координатные оси
;

; (9.4)

.

С помощью теоремы об изменении количества движения точки можно решать задачи, в которых на точку или тело, движущееся поступательно, действуют силы постоянные или переменное, зависящие от времени, а в число заданных и искомых величин входят время движения и скорости в начале и конце движения. Задачи с применением теоремы решаются следующей последовательности:

1. выбирают систему координат;

2. изображают все действующие на точку заданные (активные) силы и реакции;

3. записывают теорему об изменении количества движения точки в проекциях на выбранные оси координат;

4. определяют искомые величины.

ПРИМЕР 12.

Молот весом G=2т падает с высоты h=1м на заготовку за время t=0,01с и производит штамповку детали (рис. 23). Определить среднюю силу давления молота на заготовку.

РЕШЕНИЕ.

1. На заготовку действуют сила тяжести молота и реакция опоры. Величина опорной реакции изменяется со временем, поэтому рассмотрим среднее ее значение
.

2. направим ось координат у по вертикали вниз и применим теорему об изменении количества движения точки в проекции на эту ось:
, (1) где-- скорость молота в конце удара;

-- начальная скорость молота в момент соприкосновения с заготовкой.

3. Для определения скорости составим дифференциальное уравнение движения молота в проекции на ось у:

. (2)

Разделим переменные, проинтегрируем дважды уравнение (2):
;

;

. Постоянные интегрирования С 1 , С 2 найдем из начальных условий. При t=0 V y =0, тогда С 1 =0; у=0, тогда С 2 =0. Следовательно, молот движется по закону
, (3) а скорость движения молота изменяется по закону
. (4) Время движения молота выразим из (3) и подставим в (4)
;
. (5)

4. Проекцию импульса внешних сил на ось у найдем по формуле:
. (6) Подставим (5) и (6) в (1):
, откуда находим реакцию опоры, и, следовательно, искомое давление молота на заготовку
т.

Рисунок 24

К

где М-масса системы, V c -скорость центра масс. Теорему об изменении количества движения механической системы можно записать в дифференциальной и конечной (интегральной) форме:
;

. (9.7)

оличество движения механической системы можно определить как сумму количеств движения точек системы
. (9.5) Количество движения системы или твердого тела можно определить, зная массу системы и скорость центра масс
, (9.6)

Изменение количества движения механической системы за некоторый промежуток времени равно сумме импульсов внешних сил, Действующих за то же время. Иногда удобнее пользоваться теоремой об изменении количества движения в проекции на оси координат
; (9.8)
. (9.9)

Закон сохранения количества движения устанавливает, что при отсутствии внешних сил количество движения механической системы остается постоянным. Действие внутренних сил не может изменить количества движения системы. Из уравнения (9.6) видно, что при
,
.

Если
, то
или
.

Д

гребного винта или пропеллера, реактивного движения. Кальмары движутся рывками, выбрасывая воду из мускульного мешка по принципу водомета (рис. 25). Отталкиваемая вода обладает известным количеством движения, направленным назад. Кальмар получает при этом соответствующую скорость движения вперед за счет реактивной силы тяги, так как перед выпрыгиванием кальмара силауравновешивается силой тяжести.

ействие закона сохранения количества движения механической системы можно проиллюстрировать на примере явления отдачи или отката при стрельбе, работы

Применение теоремы об изменении количества движения позволяет исключить из рассмотрения все внутренние силы.

ПРИМЕР 13.

На железнодорожной платформе, свободно стоящей на рельсах, установлена лебедка А с барабаном радиуса r (рис. 26). Лебедка предназначена для перемещения по платформе груза В массой m 1 . Масса платформы с лебедкой m 2 . Барабан лебедки вращается по закону
. В начальный момент времени система была подвижна. Пренебрегая трением, найти закон изменения скорости платформы после включения лебедки.

РЕШЕНИЕ.

1. Рассмотрим платформу, лебедку и груз как единую механическую систему, на которую действуют внешние силы: сила тяжести груза и платформыи реакциии
.

2. Так как все внешние силы перпендикулярны оси х, т.е.
, применим закон сохранения количества движения механической системы в проекции на ось х:
. В начальный момент времени система была неподвижна, следовательно,

Выразим количество движения системы в произвольный момент времени. Платформа движется поступательно со скоростью , груз совершает сложное движение, состоящее из относительного движения по платформе со скоростьюи переносного движения вместе с платформой со скоростью., откуда
. Платформа будет перемещаться в сторону, противоположную относительному движению груза.

ПРИМЕР 14.

М

РЕШЕНИЕ.

1. Применим теорему об изменении количества движения механической системы в проекции на ось х. Так как все действующие на систему внешние силы вертикальны, то
, тогда
, откуда
. (1)

2. Выразим проекцию количества движения на ось х для рассматриваемой механической системы
,

еханическая система состоит из прямоугольной вертикальной плиты 1 массойm 1 =18кг, движущейся вдоль горизонтальных направляющих и груза D массой m 2 =6кг. В момент времени t 0 =0, когда плита двигалась со скоростью u 0 =2м/с, груз начал движение вдоль желоба в соответствии с уравнением S=AD=0,4sin(t 2) (S-в метрах, t-в секундах), (рис. 26). Определить скорость плиты в момент времени t 1 =1с, используя теорему об изменении количества движения механической системы.

где ,
-- количество движения пластины и груза соответственно.


;
, где--абсолютная скорость грузаD. Из равенства (1) следует, что К 1х +К 2х =С 1 или m 1 u x +m 2 V Dx =C 1 . (2) Для определения V Dx рассмотрим движение груза D как сложное, считая его движение по отношению к пластине относительным, а движение самой пластины переносным, тогда
, (3)
;или в проекции на ось х:. (4) Подставим (4) в (2):
. (5) Постоянную интегрирования С 1 определим из начальных условий: при t=0 u=u 0 ; (m 1 +m 2)u 0 =C 1 . (6) Подставляя значение постоянной С 1 в уравнение (5), получаем

м/с.

Количеством движения системы называют геометрическую сумму количеств движения всех материальных точек системы

Для выяснения физического смысла (70) вычислим производную от (64)

. (71)

Решая совместно (70) и (71), получим

. (72)

Таким образом, вектор количества движения механической системы определяется произведением массы системы на скорость ее центра масс .

Вычислим производную от (72)

. (73)

Решая совместно (73) и (67), получим

. (74)

Уравнение (74) выражает следующую теорему.

Теорема: Производная по времени от вектора количества движения системы равна геометрической сумме всех внешних сил системы.

При решении задач уравнение (74) необходимо спроектировать на координатные оси:

. (75)

Из анализа (74) и (75) вытекает следующий закон сохранения количества движения системы : Если сумма всех сил системы равна нулю, то вектор количества движения ее сохраняет свою величину и направление.

Если
, то
,Q = const . (76)

В частном случае этот закон может выполнять вдоль одной из координатных осей.

Если
, то,Q z = const . (77)

Теорему об изменении количества движения целесообразно использовать в тех случаях, когда в систему входят жидкие и газообразные тела.

Теорема об изменении кинетического момента механической системы

Количество движения характеризует только поступательную составляющую движения. Для характеристики вращательного движения тела введено понятие главного момента количеств движения системы относительно заданного центра (кинетического момента).

Кинетическим моментом системы относительно данного центра называется геометрическая сумма моментов количеств движения всех его точек относительно того же центра

. (78)

Проектируя (22) на оси координат можно получить выражение кинетического момента относительно координатных осей

. (79)

Кинетический момент тела относительно осей равен произведению момента инерции тела относительно этой оси на угловую скорость тела

. (80)

Из (80) следует, что кинетический момент характеризует только вращательную составляющую движения.

Характеристикой вращательного действия силы является ее момент относительно оси вращения.

Теорема об изменении кинетического момента устанавливает взаимосвязь между характеристикой вращательного движения и силой, вызывающей это движение.

Теорема: Производная по времени от вектора кинетического момента системы относительно некоторого центра равна геометрической сумме моментов всех внешних сил системы относительно того же центра

. (81)

При решении инженерных задач (81) необходимо спроектировать на координатные оси

Их анализа (81) и (82) вытекает закон сохранения кинетического момента : Если сумма моментов всех внешних сил относительно центра (или оси) равна нулю, то кинетический момент системы относительно этого центра (или оси) сохраняет свою величину и направление.

,

или

Кинетический момент нельзя изменить действием внутренних сил системы, но за счет этих сил можно изменить момент инерции, а следовательно угловую скорость.

Так как масса точки постоянна, а ее ускорение то уравнение (2), выражающее основной закон динамики, можно представить в виде

Уравнение (32) выражает одновременно теорему об изменении количества движения точки в дифференциальной форме: производная по времени от количества движения точки равна сумме действующих на точку сил

Пусть движущаяся точка имеет в момент времени скорость а в момент - скорость Умножим тогда обе части равенства (32) на и возьмем от них определенные интегралы. При этом справа, где интегрирование идет по времени, пределами интеграла будут а слева, где интегрируется скорость, пределами интеграла будут соответствующие значения скорости

Так как интеграл от равен то в результате получим

Стоящие справа интегралы, как следует из формулы (30), представляют собой импульсы действующих сил. Поэтому окончательно будет

Уравнение (33) выражает теорему об изменении количества движения точки в конечном виде: изменение количества движения точки за некоторый промежуток времени равно сумме импульсов всех действующих на точку сил за тот же промежуток времени.

При решении задач вместо векторного уравнения (33) часто пользуются уравнениями в проекциях. Проектируя обе части равенства (33) на координатные оси, получим

В случае прямолинейного движения, происходящего вдоль оси теорема выражается первым из этих уравнений.

Решение задач. Уравнения (33) или (34) позволяют, зная как при движении точки изменяется ее скорость, определить импульс действующих сил (первая задача динамики) или, зная импульсы действующих сил, определить, как изменяется при движении скорость точки (вторая задача динамики). При решении второй задачи, когда заданы силы, надо вычислить их импульсы, Как видно из равенств (30) или (31), это можно сделать лишь тогда, когда силы постоянны или зависят только от времени.

Таким образом, уравнения (33), (34) можно непосредственно использовать для решения второй задачи динамики, когда в задаче в число данных и искомых величин входят: действующие силы, время движения точки и ее начальная и конечная скорости (т. е. величины ), причем силы должны быть постоянными или зависящими только от времени.

Задача 95. Точка, масса которой кг, движется по окружности с численно постоянной скоростью Определить импульс действующей на точку силы за время, в течение которого точка проходит четверть окружности

Решение. По теореме об изменении количества движения Строя геометрически разность этих количеств движения (рис. 222), находим из полученного прямоугольного треугольника

Но по условиям задачи следовательно,

Для аналитического подсчета можно, используя первые два из уравнений (34), найти

Задача 96. Грузу, имеющему массу и лежащему на горизонтальной плоскости, сообщают (толчком) начальную скорость Последующее движение груза тормозится постоянной силой F. Определить, через сколько времени груз остановится,

Решение. По данным задачи видно, что для определения времени движения можно воспользоваться доказанной теоремой. Изображаем груз в произвольном положении (рис. 223). На него действуют сила тяжести Р, реакция плоскости N и тормозящая сила F. Направляя ось в сторону движения, составляем первое из уравнений (34)

В данном случае - скорость в момент остановки), а . Из сил проекцию на ось дает только сила F. Так как она постоянна, то где - время торможения. Подставляя все эти данные в уравнение (а), получаем откуда искомое время

Поделиться