Общее понятие, происхождение и классификация минералов. Что такое минерал? Классификация Принципы классификации и диагностики минералов

Содержание статьи

МИНЕРАЛЫ И МИНЕРАЛОГИЯ. Минералы твердые природные образования, входящие в состав горных пород Земли, Луны и некоторых других планет, а также метеоритов и астероидов. Минералы, как правило, – довольно однородные кристаллические вещества с упорядоченной внутренней структурой и определенным составом, который может быть выражен соответствующей химической формулой. Минералы не являются смесью мельчайших минеральных частиц, как, например, наждак (состоящий в основном из корунда и магнетита) или лимонит (агрегат гетита и других гидроксидов железа), к ним относятся также соединения элементов с неупорядоченной структурой, подобные вулканическим стеклам (обсидиану и др.). Минералами считаются химические элементы или их соединения, образовавшиеся в результате естественных природных процессов. Из числа минералов исключаются такие важнейшие виды минерального сырья органического происхождения, как уголь и нефть.

Минералогия – наука о минералах, их классификации, химическом составе, особенностях и закономерностях строения (структуры), происхождении, условиях нахождения в природе и практическом применении. Для более глубокого объяснения внутреннего строения минералов и их связи с историей Земли минералогия привлекает математику, физику и химию. Она в большей мере, чем другие геологические науки, использует количественные данные, так как для адекватного описания минералов необходимы тонкий химический анализ и точные физические измерения.

ИСТОРИЯ МИНЕРАЛОГИИ

Кремневые отщепы с острыми краями применялись первобытным человеком в качестве орудий труда уже в палеолите. Кремень (тонкозернистая разновидность кварца) долгое время оставался главным полезным ископаемым. В древности человеку были известны и другие минералы. Некоторые из них, например вишневый гематит , желто-коричневый гетит и черные оксиды марганца, применялись в качестве красок для наскальной живописи и раскрашивания тела, а другие, например янтарь , нефрит, самородное золото , – для изготовления ритуальных предметов, украшений и амулетов. В Египте додинастического периода (5000–3000 до н.э.) знали уже много минералов. Самородная медь , золото и серебро использовались для украшений. Несколько позже из меди и ее сплава – бронзы стали изготавливать орудия труда и оружие. Многие минералы употреблялись в качестве красителей, другие – для украшений и печаток (бирюза , жад , хрусталь, халцедон , малахит , гранат , лазурит и гематит). В настоящее время минералы служат источником получения металлов, строительных материалов (цемент, штукатурка, стекло и проч.), сырья для химической промышленности и др.

В первом известном трактате по минералогии О камнях ученика Аристотеля грека Теофраста (ок. 372–287 до н.э.) минералы делились на металлы, земли и камни. Примерно через 400 лет Плиний Старший (23–79 н.э.) в пяти последних книгах Естественной истории обобщил все имевшиеся на тот момент сведения по минералогии.

В раннем Средневековье в странах арабского Востока, воспринявших знания античной Греции и древней Индии, происходил расцвет науки. Среднеазиатский ученый-энциклопедист Бируни (973 – ок. 1050) составил описания драгоценных камней (Минералогия ) и изобрел метод точного измерения их удельных весов. Другой выдающийся ученый Ибн Сина (Авиценна) (ок. 980–1037) в трактате О камнях дал классификацию всех известных минералов, разделив их на четыре класса: камни и земли, горючие ископаемые, соли, металлы.

В Средние века в Европе происходило накопление практических сведений о минералах. Горняк и старатель по необходимости становились минералогами-практиками и передавали свой опыт и знания ученикам и подмастерьям. Первым сводом фактических сведений по практической минералогии, горному делу и металлургии стал труд Г.Агриколы О металлах (De re metallica ), опубликованный в 1556. Благодаря этому трактату и более раннему труду О природе ископаемых (De natura fossilium , 1546), в котором содержится классификация минералов на основе их физических свойств, Агрикола прослыл отцом минералогии.

На протяжении 300 лет после выхода работ Агриколы исследования в области минералогии были посвящены изучению природных кристаллов. В 1669 датский натуралист Н.Стенон, обобщив свои наблюдения над сотнями кристаллов кварца, установил закон постоянства углов между гранями кристаллов. Столетием позже (1772) Роме де Лиль подтвердил выводы Стенона. В 1784 аббат Р.Гаюи заложил основы современных представлений о кристаллической структуре. В 1809 У.Волластон изобрел отражательный гониометр, что позволило проводить более точные измерения углов между гранями кристаллов, а в 1812 выдвинул концепцию пространственной решетки как закона внутреннего строения кристаллов. В 1815 П.Кордье предложил изучать оптические свойства обломков раздробленных минералов под микроскопом. Дальнейшее развитие микроскопических исследований связано с изобретением в 1828 У.Николем устройства для получения поляризованного света (призмы Николя). Поляризационный микроскоп был усовершенствован в 1849 Г.Сорби, который применил его к изучению прозрачных шлифов горных пород.

Появилась необходимость классификации минералов. В 1735 К.Линней опубликовал труд Система природы (Systema naturae ), в котором минералы классифицировались по внешним признакам, т.е. так же, как растения и животные. Затем шведскими учеными – А.Кронстедтом в 1757 и Й.Берцелиусом в 1815 и 1824 – было предложено несколько вариантов химических классификаций минералов. Вторая классификация Берцелиуса, модифицированная К.Раммельсбергом в 1841–1847, прочно утвердилась после того, как американский минералог Дж.Дана положил ее в основу третьего издания Системы минералогии (Dana"s System of Mineralogy , 1850). Большой вклад в развитие минералогии в 18 – первой половине 19 в. внесли немецкие ученые А.Г.Вернер и И.А.Брайтхаупт и русские – М.В.Ломоносов и В.М.Севергин.

Во второй половине 19 в. усовершенствованные поляризационные микроскопы, оптические гониометры и аналитические методы позволили получить более точные данные по отдельным минеральным видам. Когда с помощью рентгеновского анализа стали изучать кристаллы, пришло более глубокое понимание строения минералов. В 1912 немецкий физик М.Лауэ экспериментально установил, что информация о внутренней структуре кристаллов может быть получена путем пропускания сквозь них рентгеновских лучей. Этот метод произвел переворот в минералогии: преимущественно описательная наука стала более точной и минералоги смогли увязать физические и химические свойства минералов с их кристаллическими структурами.

В конце 19 – начале 20 в. развитию минералогии во многом способствовали работы выдающихся российских ученых Н.И.Кокшарова, В.И.Вернадского , Е.С.Федорова, А.Е.Ферсмана, А.К.Болдырева и др. Во второй половине 20 в. минералогия взяла на вооружение новые исследовательские методы физики твердого тела, в частности, инфракрасную спектроскопию, целую серию резонансных методов (электронный парамагнитный резонанс, ядерный гамма-резонанс и др.), люминесцентную спектроскопию и т.д., а также новейшие аналитические методы, включая электронный микрозондовый анализ, электронную микроскопию в сочетании с электронографией и проч. Применение этих методов дает возможность определять химический состав минералов «в точке», т.е. по отдельным зернам минералов, изучать тонкие особенности их кристаллической структуры, содержание и распределение элементов-примесей, природу окраски и люминесценции. Внедрение точных физических методов исследования произвело в минералогии подлинную революцию. С этим этапом развития минералогии связаны имена таких российских ученых, как Н.В.Белов, Д.С.Коржинский, Д.П.Григорьев, И.И.Шафрановский и др.

ГЛАВНЫЕ СВОЙСТВА МИНЕРАЛОВ

Долгое время основными характеристиками минералов служили внешняя форма их кристаллов и других выделений, а также физические свойства (цвет, блеск, спайность, твердость, плотность и проч.), имеющие и в настоящее время большое значение при их описании и визуальной (в частности, полевой) диагностике. Эти характеристики, а также оптические, химические, электрические, магнитные и иные свойства зависят от химического состава и внутреннего строения (кристаллической структуры) минералов. Первостепенная роль химии в минералогии была осознана к середине 19 в., но важное значение структуры стало очевидным лишь с внедрением рентгенографии. Первые расшифровки кристаллических структур были выполнены уже в 1913 английскими физиками У.Г.Брэггом и У.Л.Брэггом .

Минералы – это химические соединения (исключение составляют самородные элементы). Однако даже бесцветные, оптически прозрачные образцы этих минералов почти всегда содержат небольшие количества примесей. Природные растворы или расплавы, из которых кристаллизуются минералы, обычно состоят из многих элементов. В процессе образования соединений немногочисленные атомы менее распространенных элементов могут замещать атомы главных элементов. Такое замещение настолько обычно, что химический состав многих минералов лишь очень редко приближается к составу чистого соединения. Например, состав распространенного породообразующего минерала оливина меняется в пределах составов двух т.н. конечных членов ряда: от форстерита, силиката магния Mg 2 SiO 4 , до фаялита, силиката железа Fe 2 SiO 4 . Отношения Mg:Si:O в первом минерале и Fe:Si:O – во втором составляют 2:1:4. В оливинах промежуточного состава значения отношений те же, т.е. (Mg + Fe):Si:O равно 2:1:4, а формула записывается в виде (Mg,Fe) 2 SiO 4 . Если относительные количества магния и железа известны, то это можно отразить в формуле (Mg 0,80 Fe 0,20) 2 SiO 4 , из которой видно, что 80% атомов металла представлены магнием, а 20% – железом.

Структура.

Все минералы, за исключением воды (которую – в отличие от льда – обычно не относят к минералам) и , при обычных температурах представлены твердыми телами. Однако, если воду и ртуть сильно охладить, они затвердевают: вода – при 0° С, а ртуть – при -39° С. При этих температурах молекулы воды и атомы ртути образуют характерную правильную трехмерную кристаллическую структуру (термины «кристаллический» и «твердый» в данном случае почти равноценны). Таким образом, минералы представляют собой кристаллические вещества, свойства которых определяются геометрическим расположением составляющих их атомов и типом химической связи между ними.

Элементарная ячейка (наименьшее подразделение кристалла) построена из регулярно расположенных атомов, удерживаемых вместе благодаря электронным связям. Эти мельчайшие ячейки, бесконечно повторяющиеся в трехмерном пространстве, образуют кристалл. Размеры элементарных ячеек в разных минералах различны и зависят от размеров, числа и взаимного расположения атомов в пределах ячейки. Параметры ячейки выражаются в ангстремах (Å) или нанометрах (1 Å = 10 –8 см = 0,1 нм). Составленные вместе элементарные ячейки кристалла плотно, без зазоров заполняют объем и образуют кристаллическую решетку. Кристаллы подразделяются по признаку симметрии элементарной ячейки, которая характеризуется соотношением между ее ребрами и углами. Обычно выделяют 7 сингоний (в порядке повышения симметрии): триклинную, моноклинную, ромбическую, тетрагональную, тригональную, гексагональную и кубическую (изометрическую). Иногда тригональную и гексагональную сингонии не разделяют и описывают вместе под названием гексагональной сингонии. Сингонии подразделяются на 32 кристаллических класса (вида симметрии), включающих 230 пространственных групп. Эти группы впервые были выделены в 1890 российским ученым Е.С.Федоровым. При помощи рентгеноструктурного анализа определяют размеры элементарной ячейки минерала, его сингонию, класс симметрии и пространственную группу, а также расшифровывают кристаллическую структуру, т.е. взаимное расположение в трехмерном пространстве атомов, составляющих элементарную ячейку.

ГЕОМЕТРИЧЕСКАЯ (МОРФОЛОГИЧЕСКАЯ) КРИСТАЛЛОГРАФИЯ

Кристаллы с их плоскими, гладкими, блестящими гранями издавна привлекали внимание человека. Со времени появления минералогии как науки кристаллография стала основой изучения морфологии и структуры минералов. Было установлено, что грани кристаллов имеют симметричное расположение, позволяющее отнести кристалл к определенной сингонии, а подчас – и к одному из классов (симметрии) (см. выше ). Рентгенографические исследования показали, что внешняя симметрия кристаллов соответствует внутреннему закономерному расположению атомов.

Размеры кристаллов минералов варьируют в очень широких пределах – от гигантов весом в 5 т (масса хорошо образованного кристалла кварца из Бразилии) до столь мелких, что их грани можно различить только под электронным микроскопом. Форма кристалла даже одного и того же минерала в разных образцах может несколько отличаться; например, кристаллы кварца бывают почти изометричными, игольчатыми или уплощенными. Однако все кристаллы кварца, крупные и мелкие, остроконечные и плоские, образуются при повторении идентичных элементарных ячеек. Если эти ячейки ориентированы в каком-то определенном направлении, кристалл имеет удлиненную форму, если в двух направлениях в ущерб третьему – то форма кристалла таблитчатая. Поскольку углы между соответствующими гранями одного и того же кристалла имеют постоянное значение и специфичны для каждого минерального вида, этот признак обязательно включается в характеристику минерала.

Минералы, представленные отдельными хорошо ограненными кристаллами, редки. Гораздо чаще они встречаются в виде неправильных зерен или кристаллических агрегатов. Нередко минерал характеризуется определенным типом агрегата, который может служить диагностическим признаком. Выделяют несколько типов агрегатов.

Дендритовидные ветвящиеся агрегаты похожи на листья папоротника или мох и характерны, например, для пиролюзита.

Волокнистые агрегаты, состоящие из плотно уложенных параллельных волокон, типичны для хризотила и амфибол-асбеста.

Колломорфные агрегаты, имеющие гладкую округлую поверхность, построены из волокон, которые радиально отходят от общего центра. Крупные округлые массы имеют сосцевидную форму (малахит), а более мелкие – почковидную (гематит) или гроздевидную (псиломелан).

Чешуйчатые агрегаты, состоящие из мелких пластинчатых кристаллов, характерны для слюды и барита.

Сталактиты – натечно-капельные образования, свисающие в форме сосулек, трубок, конусов или «занавесок» в карстовых пещерах. Они возникают в результате испарения минерализованных вод, просачивающихся по трещинам известняка, и часто сложены кальцитом (карбонатом кальция) или арагонитом.

Оолиты – агрегаты, состоящие из маленьких шариков и напоминающие рыбью икру, встречаются в некоторых кальцитовых (оолитовый известняк), гетитовых (оолитовая железная руда) и других подобных образованиях.

КРИСТАЛЛОХИМИЯ

После накопления рентгенографических данных и их сопоставления с результатами химических анализов стало очевидно, что особенности кристаллической структуры минерала зависят от его химического состава. Таким образом были заложены основы новой науки – кристаллохимии. Многие на первый взгляд не связанные между собой свойства минералов могут быть объяснены на основе учета их кристаллической структуры и химического состава.

Некоторые химические элементы (золото, серебро, медь) встречаются в самородном, т.е. чистом, виде. Они построены из электронейтральных атомов (в отличие от большинства минералов, атомы которых несут электрический заряд и называются ионами). Атом с недостатком электронов заряжен положительно и называется катионом; атом с избытком электронов имеет отрицательный заряд и называется анионом. Притяжение между противоположно заряженными ионами называется ионной связью и служит главной связующей силой в минералах.

При другом типе связи внешние электроны вращаются вокруг ядер по общим орбитам, соединяя атомы между собой. Ковалентная связь – самый прочный тип связи. Минералы с ковалентной связью обычно имеют высокие твердость и температуру плавления (например, алмаз).

Значительно меньшую роль в минералах играет слабая ван-дер-ваальсова связь, возникающая между электронейтральными структурными единицами. Энергия связи таких структурных единиц (слоев или групп атомов) распределена неравномерно. Ван-дер-ваальсова связь обеспечивает притяжение между противоположно заряженными участками в более крупных структурных единицах. Такой тип связи наблюдается между слоями графита (одной из природных форм углерода), образованными благодаря сильной ковалентной связи атомов углерода. Из-за слабых связей между слоями графит имеет низкую твердость и весьма совершенную спайность, параллельную слоям. Поэтому графит используют как смазочный материал.

Противоположно заряженные ионы сближаются между собой до расстояния, на котором сила отталкивания уравновешивает силу притяжения. Для любой конкретной пары «катион – анион» это критическое расстояние равно сумме «радиусов» двух ионов. Путем определения критических расстояний между различными ионами удалось установить размеры радиусов большинства ионов (в нанометрах, нм).

Поскольку для большинства минералов характерны ионные связи, их структуры можно наглядно представить в виде соприкасающихся шаров. Структуры ионных кристаллов зависят в основном от величины и знака заряда и относительных размеров ионов. Так как кристалл в целом электронейтрален, сумма положительных зарядов ионов должна быть равна сумме отрицательных. В хлориде натрия (NaCl, минерал галит) каждый ион натрия имеет заряд +1, а каждый ион хлора -1 (рис. 1), т.е. каждому иону натрия соответствует один ион хлора. Однако во флюорите (фториде кальция, CaF 2) каждый ион кальция имеет заряд +2, а ион фтора –1. Поэтому для сохранения общей электронейтральность ионов фтора должно быть вдвое больше, чем ионов кальция (рис. 2).

От величины ионов зависит также возможность их вхождения в данную кристаллическую структуру. Если ионы имеют одинаковый размер и упакованы таким образом, что каждый ион соприкасается с 12 другими, то они находятся в соответствующей координации. Существуют два способа упаковки шаров одинакового размера (рис. 3): кубическая плотнейшая упаковка, в общем случае приводящая к образованию изометрических кристаллов, и гексагональная плотнейшая упаковка, образующая гексагональные кристаллы.

Как правило, катионы меньше по размеру, чем анионы, и их размеры выражаются в долях радиуса аниона, принятого за единицу. Обычно используют отношение, получаемое путем деления радиуса катиона на радиус аниона. Если катион лишь немного меньше анионов, с которыми сочетается, он может соприкасаться с восемью окружающими его анионами, или, как принято говорить, находится в восьмерной координации по отношению к анионам, которые располагаются как бы в вершинах куба вокруг него. Эта координация (называемая также кубической) устойчива при отношениях ионных радиусов от 1 до 0,732 (рис. 4,а ). При меньшем отношении ионных радиусов восемь анионов не могут быть уложены так, чтобы касаться катиона. В таких случаях геометрия упаковки допускает шестерную координацию катионов с расположением анионов в шести вершинах октаэдра (рис. 4,б ), которая будет устойчивой при отношениях их радиусов от 0,732 до 0,416. С дальнейшим уменьшением относительного размера катиона осуществляется переход к четверной, или тетраэдрической, координации, устойчивой при значениях отношений радиусов от 0,414 до 0,225 (рис. 4,в ), затем к тройной – в пределах отношений радиусов от 0,225 до 0,155 (рис. 4,г ) и двойной – при отношениях радиусов менее 0,155 (рис. 4,д ). Хотя другие факторы также определяют тип координационного полиэдра, для большинства минералов принцип отношения радиусов ионов – одно из эффективных средств прогнозирования кристаллической структуры.

Минералы совершенно разного химического состава могут иметь аналогичные структуры, которые можно описать с помощью одних и тех же координационных полиэдров. Например, в хлориде натрия NaCl отношение радиуса иона натрия к радиусу иона хлора составляет 0,535, указывая на октаэдрическую, или шестерную, координацию. Если шесть анионов группируются вокруг каждого катиона, то, чтобы сохранить соотношение катионов и анионов, равное 1:1, вокруг каждого аниона должно быть шесть катионов. Так образуется кубическая структура, известная как структура типа хлорида натрия. Хотя ионные радиусы свинца и серы резко отличаются от ионных радиусов натрия и хлора, их отношение также предопределяет шестерную координацию, поэтому галенит PbS имеет структуру типа хлорида натрия, т.е. галит и галенит изоструктурны.

Примеси в минералах обычно присутствуют в виде ионов, замещающих ионы минерала-«хозяина». Подобные замещения в большой мере влияют на размеры ионов. Если радиусы двух ионов равны или отличаются менее чем на 15%, они легко взаимно замещаются. Если это различие составляет 15–30%, такое замещение ограничено; при различии свыше 30% замещение практически невозможно.

Существует много примеров пар изоструктурных минералов со сходным химическим составом, между которыми происходит замещение ионов. Так, карбонаты сидерит (FeCO 3) и родохрозит (MnCO 3) имеют аналогичные структуры, а железо и марганец могут замещать друг друга в любых соотношениях, образуя т.н. твердые растворы. Между этими двумя минералами существует непрерывный ряд твердых растворов. В других парах минералов ионы возможности взаимного замещения ограничены.

Поскольку минералы электронейтральны, заряд ионов также влияет на их взаимное замещение. Если происходит замещение противоположно заряженным ионом, то в каком-либо участке этой структуры должно иметь место второе замещение, при котором заряд замещающего иона компенсирует нарушение электронейтральности, вызванное первым. Такое сопряженное замещение отмечается в полевых шпатах – плагиоклазах, когда кальций (Ca 2+) замещает натрий (Na +) с образованием непрерывного ряда твердых растворов. Избыточный положительный заряд, возникающий в результате замещения ионом Ca 2+ иона Na + , компенсируется путем одновременного замещения кремния (Si 4+) на алюминий (Al 3+) в соседних участках структуры.

ФИЗИЧЕСКИЕ СВОЙСТВА МИНЕРАЛОВ

Хотя главные характеристики минералов (химический состав и внутренняя кристаллическая структура) устанавливаются на основе химических анализов и рентгеноструктурного метода, косвенно они отражаются в свойствах, которые легко наблюдаются или измеряются. Для диагностики большинства минералов достаточно определить их блеск, цвет, спайность, твердость, плотность.

Блеск

– качественная характеристика отраженного минералом света. Некоторые непрозрачные минералы сильно отражают свет и имеют металлический блеск. Это характерно для рудных минералов, например, галенита (минерал свинца), халькопирита и борнита (минералы меди), аргентита и акантита (минералы серебра). Большинство минералов поглощают или пропускают значительную часть падающего на них света и обладают неметаллическим блеском. Некоторые минералы имеют блеск, переходный от металлического к неметаллическому, который называется полуметаллическим.

Минералы с неметаллическим блеском обычно светлоокрашенные, некоторые из них прозрачны. Часто бывают прозрачными кварц, гипс и светлая слюда. Другие минералы (например, молочно-белый кварц), пропускающие свет, но сквозь которые нельзя четко различить предметы, называют просвечивающими. Минералы, содержащие металлы, отличаются от прочих по светопропусканию. Если свет проходит сквозь минерал, хотя бы в самых тонких краях зерен, то он, как правило, нерудный; если же свет не проходит, то он – рудный. Бывают, впрочем, и исключения: например, светлоокрашенный сфалерит (минерал цинка) или киноварь (минерал ртути) нередко прозрачны или просвечивают.

Минералы различаются по качественным характеристикам неметаллического блеска. Глина имеет тусклый землистый блеск. Кварц на гранях кристаллов или на поверхностях излома – стеклянный, тальк, разделяющийся на тонкие листочки по плоскостям спайности, – перламутровый. Яркий, сверкающий, как у алмаза, блеск называется алмазным.

Когда свет падает на минерал с неметаллическим блеском, то он частично отражается от поверхности минерала, а частично преломляется на этой границе. Каждое вещество характеризуется определенным показателем преломления. Поскольку этот показатель может быть измерен с высокой точностью, он является весьма полезным диагностическим признаком минералов.

Характер блеска зависит от показателя преломления, а оба они – от химического состава и кристаллической структуры минерала. В общем случае прозрачные минералы, содержащие атомы тяжелых металлов, отличаются сильным блеском и высоким показателем преломления. К этой группе относятся такие распространенные минералы, как англезит (сульфат свинца), касситерит (оксид олова) и титанит, или сфен (силикат кальция и титана). Минералы, состоящие из относительно легких элементов, также могут иметь сильный блеск и высокий показатель преломления, если их атомы плотно упакованы и удерживаются сильными химическими связями. Ярким примером является алмаз, состоящий только из одного легкого элемента углерода . В меньшей степени это справедливо и для минерала корунда (Al 2 O 3), прозрачные цветные разновидности которого – рубин и сапфиры – являются драгоценными камнями. Хотя корунд состоит из легких атомов алюминия и кислорода, они так крепко связаны между собой, что минерал имеет довольно сильный блеск и относительно высокий показатель преломления.

Некоторые блески (жирный, восковой, матовый, шелковистый и др.) зависят от состояния поверхности минерала или от строения минерального агрегата; смоляной блеск характерен для многих аморфных веществ (в том числе минералов, содержащих радиоактивные элементы уран или торий).

Цвет

– простой и удобный диагностический признак. В качестве примеров можно привести латунно-желтый пирит (FeS 2), свинцово-серый галенит (PbS) и серебристо-белый арсенопирит (FeAsS 2). У других рудных минералов с металлическим или полуметаллическим блеском характерный цвет может быть замаскирован игрой света в тонкой поверхностной пленке (побежалостью). Это свойственно большинству минералов меди, особенно борниту , который называют «павлиньей рудой» из-за его радужной сине-зеленой побежалости, быстро возникающей на свежем изломе. Однако другие медные минералы окрашены в хорошо всем знакомые цвета: малахит – в зеленый, азурит – в синий.

Некоторые неметаллические минералы безошибочно узнаются по цвету, обусловленному главным химическим элементом (желтому – серы и черному – темно-серому – графита и др.). Многие неметаллические минералы состоят из элементов, которые не обеспечивают им специфической окраски, но у них известны окрашенные разновидности, цвет которых обусловлен присутствием примесей химических элементов в малых количествах, не сопоставимых с интенсивностью вызываемой ими окраски. Такие элементы называют хромофорами; их ионы отличаются избирательным поглощением света. Например, густо-фиолетовый аметист обязан своей окраской ничтожной примеси железа в кварце, а густой зеленый цвет изумруда связан с небольшим содержанием хрома в берилле. Окраска обычно бесцветных минералов может появляться вследствие дефектов кристаллической структуры (обусловленных незаполненными позициями атомов в решетке или вхождением посторонних ионов), которые могут вызвать селективное поглощение некоторых длин волн в спектре белого света. Тогда минералы окрашиваются в дополнительные цвета. Рубины , сапфиры и александриты обязаны своей окраской именно таким световым эффектам.

Бесцветные минералы могут быть окрашены механическими включениями. Так, тонкая рассеянная вкрапленность гематита придает кварцу красный цвет, хлорита – зеленый. Молочный кварц замутнен газово-жидкими включениями. Хотя цвет минералов – одно из самых легко определяемых свойств при диагностике минералов, его надо использовать с осторожностью, так как он зависит от многих факторов.

Несмотря на изменчивость окраски многих минералов, цвет порошка минерала весьма постоянен, а потому является важным диагностическим признаком. Обычно цвет порошка минерала устанавливают по черте (т.н. «цвету черты»), которую оставляет минерал, если им провести по неглазурованной фарфоровой пластинке (бисквиту). Например, минерал флюорит бывает окрашен в разные цвета, но черта у него всегда белая.

Спайность.

Характерным свойством минералов является их поведение при раскалывании. Например, кварц и турмалин , поверхность излома которых напоминает скол стекла, имеют раковистый излом. У других минералов излом может быть описан как шероховатый, неровный или занозистый. Для многих минералов характеристикой служит не излом, а спайность. Это означает, что они раскалываются по гладким плоскостям, непосредственно связанным с их кристаллической структурой. Силы связи между плоскостями кристаллической решетки могут быть различными в зависимости от кристаллографического направления. Если в каких-то направлениях они гораздо больше, чем в других, то минерал будет раскалываться поперек самой слабой связи. Так как спайность всегда параллельна атомным плоскостям, она может быть обозначена с указанием кристаллографических направлений. Например, галит (NaCl) имеет спайность по кубу, т.е. три взаимоперпендикулярных направления возможного раскола. Спайность характеризуется также легкостью проявления и качеством возникающей спайной поверхности. Слюда обладает весьма совершенной спайностью в одном направлении, т.е. легко расщепляется на очень тонкие листочки с гладкой блестящей поверхностью. У топаза спайность совершенная в одном направлении. Минералы могут иметь два, три, четыре или шесть направлений спайности, по которым они одинаково легко раскалываются, либо несколько направлений спайности разной степени. У некоторых минералов спайность вообще отсутствует. Поскольку спайность как проявление внутренней структуры минералов является их неизменным свойством, она служит важным диагностическим признаком.

Твердость

– сопротивление, которое минерал оказывает при царапании. Твердость зависит от кристаллической структуры: чем прочнее связаны между собой атомы в структуре минерала, тем труднее его поцарапать. Тальк и графит – мягкие пластинчатые минералы, построенные из слоев атомов, связанных между собой очень слабыми силами. Они жирные на ощупь: при трении о кожу руки происходит соскальзывание отдельных тончайших слоев. Самый твердый минерал – алмаз, в котором атомы углерода так прочно связаны, что его можно поцарапать только другим алмазом. В начале 19 в. австрийский минералог Ф.Моос расположил 10 минералов в порядке возрастания их твердости. С тех пор они используются как эталоны относительной твердости минералов, т.н. шкала Мооса (табл. 1).

Чтобы определить твердость минерала, необходимо выявить самый твердый минерал, который он может поцарапать. Твердость исследуемого минерала будет больше твердости поцарапанного им минерала, но меньше твердости следующего по шкале Мооса минерала. Силы связи могут меняться в зависимости от кристаллографического направления, а поскольку твердость является грубой оценкой этих сил, она может различаться в разных направлениях. Эта разница обычно невелика, исключение составляет кианит, у которого твердость 5 в направлении, параллельном длине кристалла, и 7 – в поперечном направлении.

В минералогической практике используется также измерение абсолютных значений твердости (т.н. микротвердости) при помощи прибора склерометра, которая выражается в кг/мм 2 .

Плотность.

Масса атомов химических элементов меняется от водорода (самый легкий) до урана (самый тяжелый). При прочих равных условиях масса вещества, состоящего из тяжелых атомов, больше, чем у вещества, состоящего из легких атомов. Например, два карбоната – арагонит и церуссит – имеют сходную внутреннюю структуру, но в состав арагонита входят легкие атомы кальция, а в состав церуссита – тяжелые атомы свинца. В результате масса церуссита превышает массу арагонита того же объема. Масса единицы объема минерала зависит также от плотности упаковки атомов. Кальцит, как и арагонит, представляет собой карбонат кальция, но в кальците атомы упакованы менее плотно, потому он имеет меньшую массу единицы объема, чем арагонит. Относительная масса, или плотность, зависит от химического состава и внутренней структуры. Плотность – это отношение массы вещества к массе того же объема воды при 4° С. Так, если масса минерала составляет 4 г, а масса того же объема воды – 1 г, то плотность минерала равна 4. В минералогии принято выражать плотность в г/см 3 .

Плотность – важный диагностический признак минералов, и ее нетрудно измерить. Сначала образец взвешивается в воздушной среде, а затем – в воде. Поскольку на образец, погруженный в воду, действует выталкивающая сила, направленная вверх, его вес там меньше, чем в воздухе. Потеря веса равна весу вытесненной воды. Таким образом, плотность определяется отношением массы образца на воздухе к потере его веса в воде.

КЛАССИФИКАЦИЯ МИНЕРАЛОВ

Хотя химический состав служил основой классификации минералов с середины 19 в., минералоги не всегда придерживались единого мнения о том, каким должен быть порядок расположения в ней минералов. Согласно одному из методов построения классификации, минералы группировали по одинаковому главному металлу или катиону. При этом минералы железа попадали в одну группу, минералы свинца – в другую, минералы цинка – в третью и т.д. Однако по мере развития науки выяснилось, что минералы, содержащие один и тот же неметалл (анион или анионную группу), имеют сходные свойства и похожи между собой гораздо больше, чем минералы с общим металлом. К тому же минералы с общим анионом встречаются в одинаковой геологической обстановке и имеют близкое происхождение. В результате в современной систематике (см. табл. 2) минералы объединяются в классы по признаку общего аниона или анионной группы. Единственное исключение составляют самородные элементы, которые встречаются в природе сами по себе, не образуя соединений с другими элементами.

Таблица 2. Классификация минералов
Таблица 2. КЛАССИФИКАЦИЯ МИНЕРАЛОВ
Класс Минерал (пример) Химическая формула
Самородные элементы Золото Au
Карбиды 1 Муассанит SiC
Сульфиды 2 и сульфосоли Киноварь
Энаргит
HgS
Cu 3 AsS 4
Оксиды Гематит Fe 2 O 3
Гидроксиды Брусит Mg(OH) 2
Галогениды Флюорит CaF 2
Карбонаты Кальцит CaCO 3
Нитраты Калиевая селитра KNO 3
Бораты Бура Na 2 B 4 O 5 (OH)4Ч8H 2 O
Фосфаты 3 Апатит Ca 5 (PO 4) 3 F
Сульфаты Гипс CaSO 4Ч 2H 2 O
Хроматы Крокоит PbCrO 4
Вольфраматы 4 Шеелит CaWO 4
Силикаты Альбит NaAlSi 3 O 8
Включая нитриды и фосфиды
2 Включая арсениды, селениды и теллуриды.
3 Включая арсенаты и ванадаты.
4 Включая молибдаты.

Химические классы подразделяются на подклассы (по химизму и структурному мотиву), которые, в свою очередь, разбиваются на семейства и группы (по структурному типу). Отдельные минеральные виды, входящие в состав группы, могут образовывать ряды, а один минеральный вид может иметь несколько разновидностей.

К настоящему времени ок. 4000 минералов признаны самостоятельными минеральными видами. К этому списку по мере открытия добавляются новые минералы и исключаются давно известные, но дискредитированные по мере совершенствования методов минералогических исследований.

ПРОИСХОЖДЕНИЕ И УСЛОВИЯ НАХОЖДЕНИЯ МИНЕРАЛОВ

Минералогия не ограничивается определением свойств минералов, она исследует также происхождение, условия нахождения и природные ассоциации минералов. Со времени возникновения Земли примерно 4,6 млрд. лет назад многие минералы разрушились в результате механического дробления, химических преобразований или плавления. Но элементы, слагавшие эти минералы, сохранились, перегруппировались и образовали новые минералы. Таким образом, существующие ныне минералы являются продуктами процессов, развивавшихся на протяжении геологической истории Земли.

Бóльшая часть земной коры сложена изверженными породами, которые местами перекрыты относительно маломощным покровом осадочных и метаморфических пород. Поэтому состав земной коры в принципе соответствует усредненному составу изверженной породы. Восемь элементов (см. табл. 3 ) составляют 99% массы земной коры и соответственно 99% массы слагающих ее минералов.

Элемент Массовые проценты Объемные проценты Кислород 46,40 94,04 Кремний 28,15 0,88 Алюминий 8,23 0,48 Железо 5,63 0,49 Кальций 4,15 1,18 Натрий 2,36 1,11 Магний 2,33 0,33 Калий 2,09 1,49

По элементному составу земная кора представляет собой каркасную постройку, состоящую из ионов кислорода, связанных с более мелкими ионами кремния и алюминия. Таким образом, главными минералами являются силикаты, на долю которых приходится ок. 35% всех известных минералов и ок. 40% – наиболее распространенных. Важнейшие из них – полевые шпаты (семейство алюмосиликатов, содержащих калий, натрий и кальций, реже – барий). Другие распространенные породообразующие силикаты представлены кварцем (впрочем, он чаще относится к оксидам), слюдами, амфиболами, пироксенами и оливином.

Изверженные породы.

Изверженные, или магматические, породы образуются при охлаждении и кристаллизации расплавленной магмы. Процентное содержание различных минералов и, следовательно, тип образовавшейся породы зависят от соотношения элементов, содержавшихся в магме во время ее затвердевания. Каждый тип изверженной горной породы обычно состоит из ограниченного набора минералов, называющихся главными породообразующими. В дополнение к ним могут присутствовать в меньших количествах второстепенные и акцессорные минералы. Например, главными минералами в граните могут быть калиевый полевой шпат (30%), натрий-кальциевый полевой шпат (30%), кварц (30%), слюды и роговая обманка (10%). В качестве акцессорных минералов могут присутствовать циркон, сфен, апатит, магнетит и ильменит.

Изверженные породы обычно классифицируют в зависимости от вида и количества каждого из содержащихся в них полевых шпатов. Однако в некоторых породах полевой шпат отсутствует. Далее изверженные породы классифицируют по их структуре, которая отражает условия затвердевания породы. Медленно кристаллизующаяся глубоко в недрах Земли магма порождает интрузивные плутонические породы с крупно- или среднезернистой структурой. Если магма извергается на поверхность в виде лавы, она быстро остывает и возникают тонкозернистые вулканические (эффузивные, или излившиеся) породы. Иногда некоторые вулканические породы (например, обсидиан) остывают столь быстро, что не успевает произойти их кристаллизация; подобные породы имеют стекловидный облик (вулканические стекла).

Осадочные породы.

Когда коренные породы выветриваются или размываются, обломочный или растворенный материал оказывается включенным в состав осадочных пород. В результате химического выветривания минералов, происходящего на границе литосферы и атмосферы, формируются новые минералы, например, глинистые – из полевого шпата. Некоторые элементы высвобождаются при растворении минералов (например, кальцита) в поверхностных водах. Однако другие минералы, например кварц, даже механически раздробленные, сохраняют устойчивость к химическому выветриванию.

Высвободившиеся при выветривании механически и химически устойчивые минералы с достаточно высокой плотностью образуют на земной поверхности россыпные месторождения. Из россыпей, чаще всего аллювиальных (речных), добывают золото, платину, алмазы, иные драгоценные камни, оловянный камень (касситерит), минералы других металлов. В определенных климатических условиях формируются мощные коры выветривания, нередко обогащенные рудными минералами. С корами выветривания бывают сопряжены промышленные месторождения бокситов (руд алюминия), скопления гематита (железных руд), водных силикатов никеля, минералов ниобия и других редких металлов.

Основная масса продуктов выветривания выносится по системе водотоков в озера и моря, на дне которых образует слоистую осадочную толщу. Глинистые сланцы сложены в основном глинистыми минералами, а песчаник состоит преимущественно из сцементированных зерен кварца. Растворенный материал может извлекаться из воды живыми организмами или выпадать в осадок в результате химических реакций и испарения. Карбонат кальция поглощается из морской воды моллюсками, которые строят из него свои твердые раковины. Бóльшая часть известняков образуется в результате аккумуляции раковин и скелетов морских организмов, хотя частично карбонат кальция осаждается химическим путем.

Эвапоритовые залежи формируются в результате испарения морской воды. Эвапориты – обширная группа минералов, в число которых входят галит (поваренная соль), гипс и ангидрит (сульфаты кальция), сильвин (хлорид калия); все они имеют важное практическое применение. Эти минералы осаждаются также при испарении с поверхности соляных озер, но в этом случае повышение концентрации редких элементов может привести к дополнительному осаждению некоторых других минералов. Именно в такой обстановке образуются бораты.

Метаморфические породы.

Региональный метаморфизм.

Изверженные и осадочные породы, захороненные на большой глубине, под действием температуры и давления испытывают преобразования, называющиеся метаморфическими, в ходе которых меняются первоначальные свойства горных пород, а исходные минералы перекристаллизовываются или полностью трансформируются. В результате минералы обычно располагаются вдоль параллельных плоскостей, придавая породам сланцеватый облик. Тонкосланцеватые метаморфические породы называются сланцами. Они часто бывают обогащены пластинчатыми силикатными минералами (слюдой, хлоритом или тальком). Более грубосланцеватые метаморфические породы – гнейсы; в них чередуются полосы кварца, полевого шпата и темноцветных минералов. Когда сланцы и гнейсы содержат какой-либо типично метаморфический минерал, это отражается в названии породы, например, силлиманитовый или ставролитовый сланец, кианитовый или гранатовый гнейс.

Контактовый метаморфизм.

При подъеме магмы в верхние слои земной коры в породах, в которые она внедрилась, обычно происходят изменения, т.н. контактовый метаморфизм. Эти изменения проявляются в перекристаллизации первоначальных или образовании новых минералов. Степень метаморфизма зависит как от типа магмы, так и от типа породы, которую она пронизывает. Глинистые и близкие им по химическому составу породы преобразуются в контактовые роговики (биотитовые, кордиеритовые, гранатовые и др.). Наиболее интенсивные изменения происходят, когда гранитная магма внедряется в известняки: термическое воздействие является причиной их перекристаллизации и образования мрамора; в результате химического взаимодействия с известняками отделяющихся от магмы растворов образуется большая группа минералов (силикаты кальция и магния: волластонит, гроссуляровый и андрадитовый гранаты, везувиан, или идокраз, эпидот, тремолит и диопсид). В некоторых случаях при контактовом метаморфизме привносятся рудные минералы, что делает породы ценными источниками получения меди, свинца, цинка и вольфрама.

Метасоматоз.

В результате регионального и контактового метаморфизма не происходит существенного изменения химического состава исходных пород, а меняются лишь их минеральный состав и внешний облик. Когда растворами привносятся одни элементы и выносятся другие, происходит значительное изменение химического состава пород. Такие вновь образовавшиеся породы называются метосоматическими. Например, взаимодействие известняков с растворами, выделяемыми гранитной магмой в ходе кристаллизации, приводит к образованию вокруг гранитных массивов зон контактово-метасоматических руд – скарпов, которые нередко вмещают оруденение.

РУДНЫЕ МЕСТОРОЖДЕНИЯ И ПЕГМАТИТЫ

Химический состав крупнозернистого гранита может существенно отличаться от состава исходной магмы. Изучение пород показало, что минералы выделяются из магмы в определенной последовательности. Такие богатые железом и магнием минералы, как оливин и пироксены, а также акцессорные минералы кристаллизуются в первую очередь. Из-за более высокой плотности, чем окружающий расплав, в результате процесса магматической сегрегации они оседают вниз. Полагают, что таким образом образуются дуниты – породы, состоящие почти целиком из оливина. Сходное происхождение приписывается некоторым крупным скоплениям магнетита, ильменита и хромита, которые являются рядами соответственно железа, титана и хрома.

Однако состав расплава, остающегося после удаления минералов путем магматической сегрегации, не полностью идентичен составу образующейся из него породы. В ходе кристаллизации расплава в нем возрастает концентрация воды и других летучих компонентов (например, соединений фтора и бора), а вместе с ними многих других элементов, атомы которых слишком велики или слишком малы для вхождения в кристаллические структуры породообразующих минералов. Выделившиеся из кристаллизующейся магмы водные флюиды могут подниматься по трещинам к поверхности Земли, в область более низких температур и давлений. Это обусловливает отложение минералов в трещинах и образование жильных месторождений. Некоторые жилы сложены в основном неметаллическими минералами (кварцем, кальцитом, баритом и флюоритом). Другие жилы содержат минералы таких металлов, как золото, серебро, медь, свинец, цинк, олово и ртуть; соответственно, они могут представлять собой ценные рудные месторождения. Поскольку подобные месторождения образуются при участии нагретых водных растворов, их называют гидротермальными. Следует сказать, что самые крупные гидротермальные месторождения – не жильные, а метасоматические; они представляют собой пластообразные или иной формы залежи, образовавшиеся путем замещения горных пород (чаще всего известняков) рудоносными растворами. О минералах, слагающих такие месторождения, говорят, что они имеют гидротермально-метасоматическое происхождение.

Пегматиты генетически связаны с кристаллизующейся гранитной магмой. Масса высокоподвижного флюида, еще богатая элементами, входящими в состав породообразующих минералов, может быть выброшена из магматической камеры во вмещающие породы, где она кристаллизуется с образованием тел грубозернистой структуры, сложенных в основном породообразующими минералами – кварцем, полевым шпатом и слюдой. Такие тела горных пород, называемые пегматитами, весьма изменчивы по величине. Максимальная протяженность большинства пегматитовых тел – несколько сотен метров, но самые крупные из них достигают длины 3 км, а у небольших она измеряется первыми метрами. В пегматитах содержатся крупные кристаллы отдельных минералов, в том числе самые большие в мире полевошпатовые длиной в несколько метров, слюды – до 3 м в поперечнике, кварца – массой до 5 т.

В некоторых пегматитообразующих флюидах концентрируются редкие элементы (часто в форме крупных кристаллов), например, бериллий – в берилле и хризоберилле, литий – в сподумене, петалитите, амблигоните и лепидолите, цезий – в полуците, бор – в турмалине, фтор – в апатите и топазе. Большинство этих минералов имеют ювелирные разновидности. Промышленное значение пегматитов отчасти связано с тем, что они являются источником драгоценных камней, но главным образом – высокосортных калиевого полевого шпата и слюды, а также рудами лития, цезия и тантала, отчасти бериллия.


Литература:

Минералы: Справочник , тт. 1–4. М., 1960–1992
Флейшер М. Словарь минеральных видов . М., 1980
Минералогическая энциклопедия . Л., 1985
Берри Л., Мейсон Б., Дитрих Р. Минералогия. М., 1987



Твердая оболочка Земли - земная кора - составляет лишь 1,5% от общего объема земного шара. Но, несмотря на это, именно земная кора, а точнее ее верхний слой, представляет для нас наибольший интерес, так как он является источником минерального сырья.
Минералы - это относительно однородные природные тела, имеющие определенные химический состав и физические свойства. Название «минерал» происходит от латинского слова «минера», что в буквальном переводе означает - руда, рудный. Наука, изучающая состав, структуру и свойства минералов, их происхождение и условия залегания, называется минералогией.
Минералы образуются в результате физико-химических процессов, совершающихся в земной коре. Как и вся окружающая нас природа, они состоят из химических элементов. Образно говоря, минерал - это своего рода здание из кирпичиков - химических элементов, построенное по определенным законам природы. И подобно тому, как из примерно одинакового количества кирпичей человеком возведено на Земле множество различных зданий, из сравнительно небольшого числа химических элементов природой создано в земной коре более 3 тыс. разнообразных минералов.

Всего с учетом многочисленных разновидностей насчитывается более 7 тыс. их наименований, которые даются каждому минералу по какому-либо признаку.
В земной коре минералы чаще встречаются не самостоятельно, а в составе . Они во многом определяют физико-механические свойства горных пород и с этой точки зрения представляют наибольший интерес для технологии обработки камня.
Большинство минералов встречается в природе в твердом состоянии. Твердые минералы могут быть кристаллическими или аморфными, различаясь внешне геометрической формой - правильной у кристаллических и неопределенной у аморфных.

Форма минералов зависит от расположения в них атомов. В кристаллических минералах атомы располагаются в строго определенном порядке, образуя пространственную решетку, благодаря которой многие минералы (например, кристалл кварца) имеют вид правильных многогранников. Кристаллические минералы анизотропны, т. е. физические свойства их различны по разным направлениям. В аморфных минералах (обычно они имеют форму натеков) атомы расположены беспорядочно. Такие минералы изотропны, т. е. физические свойства их одинаковы по всем направлениям.

Классификация минералов


В соответствии с общепривятой в настоящее время химической классификацией все минералы могут быть разделены на девять классов:
I. Силикаты - соли кремневых кислот, среди которых выделяют подгруппы минералов, имеющих некоторую общность состава и строения: полевые шпаты, разделяющиеся по химическому составу на плагиоклазы и ортоклазы, пироксены, амфиболы, слюды, оливин, тальк, хлориты и глинистые минералы. Это самый многочисленный класс, насчитывающий до 800 минералов.
II. Карбонаты - соли угольной кислоты, включающие до 80 минералов и в их числе наиболее распространенные кальцит, магнезит н доломит.

III. Окислы и гидроокислы - объединяют около 200 минералов, среди которых наиболее распространены кварц, опал, лимонит, гаматит.
IV. Сульфиды - соединения элементов с серой, насчитывающие до 200 минералов. Типичный представитель - пирит.
V. Сульфаты - соли серной кислоты, включающие около 260 минералов,
среди которых наибольшее распространение получили гипс и ангидрит.
VI. Галоиды - соли галоидных кислот, насчитывающие около 100 мине-
ралов. Типичные представители галоидов - галит (поваренная соль) и
флюорит.
VII. Фосфаты - соли фосфорной кислоты. Типичный представитель -
апатит.
VIII. Вольфраматы - вольфрамокислые соединения.
IX. Самородные элементы - алмаз и сера.

Буду рад Вашим комментариям

Несмотря на то что многие люди приблизительно представляют себе, что это такое, некоторые не могут дать определение понятию «минерал». Классификация минералов включает в себя большое количество самых разнообразных элементов, каждый из которых нашел применение в той или иной сфере деятельности благодаря своим преимуществам и особенностям. Поэтому важно знать о том, какими свойствами они обладают и как могут быть использованы.

Минералы представляют собой продукты искусственных или естественных химических реакций, которые происходят как внутри земной коры, так и на ее поверхности, и при этом являются однородными химически и физически.

Классификация

На сегодняшний день известно более 4000 различных пород, которые входят в категорию «минерал». Классификация минералов же осуществляется по следующим признакам:

  • генетические (в зависимости от происхождения);
  • практические (сырье, руда, драгоценные камни, горючее и т. п.);
  • химические.

Химическая

На данный момент наиболее распространенной является классификация минералов по химическому составу, которая применяется современными минералогами и геологами. Она базируется на характере соединений, между различными структурами элементами, типах упаковки и еще множестве других особенностей, которые может иметь минерал. Классификация минералов такого рода предусматривает разделение их на пять типов, каждый из которых характеризуется преобладанием определенного характера связи между определенными структурными единицами.

  • самородные элементы;
  • сульфиды;
  • окислы и гидроокислы;
  • соли кислородных кислот;
  • галогениды.

Далее по характеру анионов они разделяются на несколько классов (в каждом типе свое деление), внутри которых уже разбиваются на подклассы, из которых можно выделить: каркасный, цепочечный, островной, координационный и слоистый минерал. Классификация минералов, которые близки между собой по составу и имеют сходную структуру, предусматривает их объединение в различные группы.

Характеристика типов минералов

  • Самородные элементы. Сюда входят самородные металлоиды и металлы, такие как железо, платина или золото, а также неметаллы наподобие алмаза, серы и графита.
  • Сульфиты, а также различные их аналоги. Химическая классификация минералов включает в эту группу соли такие как пирит, галенит и другие.
  • Окислы, гидроокислы и другие их аналоги, представляющие собой соединение металла с кислородом. Магнетит, хромит, гематит, гетит - это основные представители данной категории, которые выделяет химическая классификация минералов.
  • Соли кислородных кислот.
  • Галогениды.

Также стоит отметить, что в группе "соли кислородных кислот" существует еще и классификация минералов по классам:

  • карбонаты;
  • сульфаты;
  • вольфраматы и молибдаты;
  • фосфаты;
  • силикаты.

Также бывают разделяющиеся на три группы:

  • магматические;
  • осадочные;
  • метаморфические.

По происхождению

Классификация минералов по происхождению включает в себя три основные группы:

  • Эндогенные. Такие процессы минералообразования в преимущественном большинстве случаев предусматривают внедрение в кору земли и последующее застывание подземных раскаленных сплавов, которые принято называть магмами. При этом само образование минералов осуществляется в три шага: магматический, пегматитовый и постмагматический.
  • Экзогенные. В данном случае образование минералов осуществляется совершенно в других условиях по сравнению с эндогенным. Экзогенное минералообразование предусматривает химическое и физическое разложение веществ и одновременное формирование новообразований, имеющих устойчивость к другой среде. Кристаллы образуются в результате выветривания эндогенных минералов.
  • Метаморфические. Вне зависимости от путей образования горных пород, их прочности или устойчивости, они всегда будут изменяться под воздействием определенных условий. Породы, которые формируются по причине изменения свойств или состава первоначальных образцов, принято называть метаморфическими.

По Ферсману и Бауэру

Классификация минералов по Ферсману и Бауэру включает в себя несколько пород, предназначенных в основном для изготовления различных изделий. В нее входят:

  • самоцветы;
  • цветные камни;
  • органогенные камни.

Физические свойства

Классификация минералов и горных пород по происхождению и составу включает в себя множество наименований, и при этом каждый элемент имеет уникальные физические свойства. В зависимости от этих параметров определяется ценность той или иной породы, а также возможность его применения в различных сферах деятельности человека.

Твердость

Данная характеристика представляет собой сопротивление определенного твердого тела царапающему воздействию другого. Таким образом, если рассматриваемый минерал мягче того, которым царапают его поверхность, на нем будут оставаться следы.

Принципы классификации минералов по твердости основываются на использовании шкалы Мооса, которая представлена специально подобранными породами, каждая из которых способна царапать своим острым концом предыдущие наименования. Она включает в себя список из десяти наименований, который начинается с талька и гипса, а заканчивается, как многим известно, алмазом - наиболее твердым веществом.

Изначально породой принято проводить по стеклу. Если на нем будет оставаться царапина, то в таком случае классификация минералов по твердости уже предусматривает присваивание ему более 5-го класса. После этого твердость уже уточняется по Соответственно, если на стекле осталась царапина, то в таком случае далее берется образец из 6-го класса (полевой шпат), после чего пробуют чертить им по нужному минералу. Таким образом, если, к примеру, оставил на образце царапину, а апатит, который находится под номером 5, не оставил, ему присваивается класс 5.5.

Не стоит забывать о том, что в зависимости от значения кристаллографического направления у некоторых минералов может различаться твердость. К примеру, у дистена на плоскости спайности твердость вдоль длинной оси кристалла имеет значение 4, в то время как поперек на этой же плоскости оно увеличивается до 6. Очень твердые минералы можно встретить исключительно в группе с неметаллическим блеском.

Блеск

Формирование блеска у минералов осуществляется за счет отражения от их поверхности лучей света. В любом пособии о минералах классификация предусматривает деление на две крупные группы:

  • с металлическим блеском;
  • с неметаллическим блеском.

К первым относятся те породы, которые дают черную черту и являются непрозрачными даже в достаточно тонких осколках. Сюда относится магнетит, графит и уголь. В качестве исключения здесь рассматриваются также минералы с неметаллическим блеском, имеющие цветную черту. Это касается золота с зеленоватой чертой, меди со своеобразной красной, серебра с серебряно-белой, а также ряда других.

Металлический по своей природе схож с блеском свежего излома различных металлов, и его достаточно хорошо можно увидеть на свежей поверхности образца, даже если рассматриваются Классификация изделий с таким блеском также включает в себя непрозрачные образцы, которые являются более тяжелыми в сравнению с первой категорией.

Металлический блеск является характерным для минералов, которые представляют собой руду различных металлов.

Цвет

Стоит отметить, что цвет является постоянным признаком только для некоторых минералов. Таким образом, малахит всегда остается зеленым, золото не теряет своего золотисто-желтого цвета и т. д., в то время как для множества других он является непостоянным. Для определения цвета нужно предварительно получить свежий скол.

Отдельное внимание следует уделить тому, что классификация свойств минералов предусматривает также такое понятие, как цвет черты (молотого порошка), который зачастую не отличается от стандартного. Но при этом существуют и такие породы, у которых цвет порошка значительно отличается от их собственного. К примеру, в их число входит кальцит, который может быть желтым, белым, голубым, синим и еще во множестве других вариаций, но при этом порошок в любом случае будет оставаться белым.

Порошок, или черта минерала, получается на фарфоре, который не должен покрываться никакой глазурью и среди профессионалов называется просто «бисквит». По его поверхности проводится черта определяемым минералом, после чего она немного размазывается пальцем. Не следует забывать о том, что твердые, а также сильно твердые минералы не оставляют за собой никакого следа по причине того, что этот «бисквит» они попросту будут царапать, поэтому предварительно нужно соскоблить определенную часть с них на белую бумагу, и затем уже растереть до нужного состояния.

Спайность

Данное понятие подразумевает свойство минерала раскалываться или же расщепляться в некотором направлении, оставляя при этом блестящую гладкую поверхность. Стоит отметить тот факт, что Эразм Бартолин, который открыл данное свойство, отправил результаты проведенных исследований довольно авторитетной комиссии, включающей в себя таких известных ученых, как Бойль, Гук, Ньютон и еще множество других, но они признали обнаруженные явления случайными, а законы недействительными, хотя уже буквально через столетие оказалось, что все результаты были верны.

Таким образом, предусматривается пять основных градаций спайности:

  • весьма совершенная - минерал можно легко расщепить на небольшие пластинки;
  • совершенная - при любых ударах молотком образец будет раскалываться на обломки, которые ограничиваются плоскостями спайности;
  • ясная или средняя - при попытке раскалывания минерала формируются обломками, которые ограничиваются не только плоскостями спайности, но и неровными поверхностями в случайных направлениях;
  • несовершенная - обнаруживается с определенными сложностями;
  • весьма несовершенная - спайность практически отсутствует.

Определенные минералы имеют сразу несколько направлений спайности, что зачастую становится для них основным диагностическим признаком.

Излом

Под этим понятием подразумевается поверхность раскола, которая прошла в минерале не по спайности. На сегодняшний день принято различать основные пять типов изломов:

  • ровный - на поверхности отсутствуют какие-либо заметные изгибы, но при этом она не зеркально ровная, как в случае со спайностью;
  • ступенчатый - характерен для кристаллов, имеющих более-менее ясную и совершенную спайность;
  • неровный - проявляется, к примеру, у апатита, а также ряда других минералов, имеющих несовершенную спайность;
  • занозистый - характерен для минералов волокнистого сложения и чем-то схож с изломом древесины поперек волокнистости;
  • раковистый - по форме своей поверхности схож с раковиной;

Другие свойства

Достаточно большое количество минералов имеет такой диагностический или отличительный признак, как магнитность. Для ее определения принято использовать стандартный компас или специальный намагниченный нож. Проведение испытаний в данном случае осуществляется следующим образом: берется небольшой кусочек или же малое количество порошка испытуемого материала, после чего к нему притрагиваются намагниченным ножом или подковкой. Если после этой процедуры частички минерала начинают притягиваться, это говорит о наличии у него определенной магнитности. При использовании компаса его кладут на какую-нибудь ровную поверхность, после чего дожидаются выравнивания стрелки и подносят к ней минерал, не прикасаясь при этом к самому устройству. Если стрелка начинает смещаться, это говорит о том, что он магнитный.

Определенные минералы, в составе которых содержатся углекислые соли, под воздействием соляной кислоты начинают выделять углекислый газ, который проявляется в визе пузырьков, поэтому многие называют это «кипением». Среди таких минералов выделяются: малахит, кальцит, мел, мрамор и известняк.

Также некоторые вещества можно хорошо растворять в воде. Такую способность минералов несложно определить на вкус, и в частности, это касается а также и других.

Если требуется проведение исследований минералов на плавкость и горение, то нужно предварительно отколоть небольшой кусочек от образца, после чего с помощью пинцета внести его непосредственно в пламя от газовой горелки, спиртовки или же свечи.

Формы их нахождения в природе

В преимущественном большинстве случаев в природе различные минералы встречаются в виде сростков или одиночных кристаллов, а также могут показываться в виде скоплений. Последние состоят из большого количества зерен, имеющих внутреннее Таким образом, выделяется три основных группы, имеющих характерный внешний вид:

  • изометрические, одинаково развитые во всех трех направлениях;
  • удлиненные, имеющие более вытянутые формы в одном из направлений;
  • вытянутые в двух направлениях при сохранении третьего в коротком виде.

При этом стоит отметить, что некоторые минералы могут собой образовывать закономерно сросшиеся кристаллы, которые потом называют двойниками, тройниками и другими наименованиями. Такие образцы зачастую являют собой результат срастания или же взаимного прорастания кристаллов.

Виды

Не стоит путать закономерные сростки и незакономерные агрегаты кристаллов, к примеру, со «щетками» или же друзами, которые нарастают на стенах пещер и различных полостей в горных породах. Друзы представляют собой сростки, образующиеся из нескольких более или менее правильных кристаллов и при этом прирастающие одним концом к какой-нибудь породе. Для их формирования требуется открытая полость, которая предусматривает возможность свободного роста минералов.

Помимо всего прочего, многие кристаллические минералы отличаются достаточно сложными неправильными формами, что приводит к образованию дендритов, натечных форм и других. Формирование дендритов осуществляется по причине слишком быстрой кристаллизации минералов, расположенных в тонких трещинах и порах, причем породы в данном случае начинают напоминать довольно причудливые ветви растений.

Нередко бывают и такие ситуации, когда минералы практически полностью заполняют небольшое пустое пространство, что приводит к образованию секреции. У них используется концентрическое строение, а минеральное вещество заполняет его к центру от периферии. Достаточно крупные секреции, у которых внутри остается пустое пространство, принято называть жеодами, в то время как небольшие образования именуются миндалинами.

Конкреции - это стяжения некорректной округлой или шарообразной формы, формирование которых возникает по причине активного отложения минеральных веществ вокруг определенного центра. Довольно часто для них характерна радиально-лучистая внутренняя конструкция, а в отличие от секреций рост осуществляется, наоборот, к периферии от центра.

Минералы классифицируются по химическому составу и кристаллической структуре на следующие группы:

1) самородные элементы;

2) сульфиды и сульфосоли;

3) галоидные соединения (галогениды);

4) оксиды;

5) кислородные соли (карбонаты, сульфаты, вольфраматы, фосфаты, силикаты).

Ниже будут рассмотрены минералы этих групп, входящие в программу курса минералогии для студентов металлургических факультетов высших учебных заведений.

Самородные элементы

Земная кора содержит не более 0,1 % (по массе) самородных элементов (83 минерала). Их добыча связана со значительными трудностями, в связи с чем многие из них особенно высоко ценятся и, являясь эталонами человеческого труда, используются в золотых запасах стран в качестве обеспечения национальной валюты в международной торговле. Генетически связаны с процессами кристаллизации магмы (Pt, алмаз, графит), с гидротермальными (Аu) и осадочными (S) процессами. Самородное железо часто имеет космическое происхождение.

Для самородных металлов характерны чрезвычайно высокая пластичность, металлический блеск, ковкость, тепло- и электропроводность, обусловливаемые металлической связью в кристаллической решетке.

Характерны также высокие плотности. Ими обладают самые тяжелые минералы: невьянскит (до 21,5 г/см 3) и сыссертскит (до 22,5 г/см 3).

Кроме самородных металлов (Ru, Rh, Pd, Аg, Os, Ir, Pt, Au, Fe, Cu, Ni, Нg) встречаются также самородные металлоиды (As, Sb, Bi) и неметаллы (S, Se, Те, С).

Золото, Au. Название от лат. "Soil" - знака солнца у алхимиков. Совершенно чистое, т.н. "губчатое" золото встречается редко. Образует непрерывный ряд твердых растворов с серебром (кюстелит содержит до 20 % Au; электрум - свыше 20 % Au), от которого золото белеет, а также с медью (купроаурид содержит до 20 % Си), примесь которой придает золоту красноватый оттенок. Висмутаурит содержит до 4 % Bi; порпецит - до 11 % Pd и до 4 % Аg.

Золотой самородок весом более 70 кг. В гарвардском музее (Natural History). Фото: Olivier Chafik

Кристаллы золота (октаэдры, додекаэдры и кубы) встречаются редко. Характерны неправильной формы зерна, вкрапленные в кварц. Коренные месторождения золота образуются при движении термальных вод по трещинам и порам в кварце. Часто выпадает из растворов вместе с сульфидами. При выветривании коренных месторождений вода выносит крупицы золота в ручьи, реки, на дне которых образуются россыпи золота, добываемые драгами.

Поликсен, Pt. Название от греч. "поли" - много, "ксенос" – чужой (имеется в виду наличие многочисленных примесей в Pt). В технике и быту называют платиной (от испанского "плата" - серебро), т.е. похожая на серебро, "серебрецо". Содержит до 30 % Fe, что дает минералу магнитность (до 14 % Си; до 7 % Pd, до 7 % Ir; до 4 % Ro, до 6%Ni).

Pt кристаллизуется в виде мелких зерен в ультраосновных магмах. Характерные признаки: стально-серый цвет, металлический блеск, высокая плотность. Растворяется только в нагретой царской водке, что позволяет отличить Pt от похожего серебра. Необычайно пластична: из 1 г изготавливается до 500 км проволоки. Присутствие иридия в Pt повышает ее твердость до 7. Используется в качестве катализатора в химии, для изготовления химических тиглей, термопар.

Железо, Fe. Самородное железо бывает теллурическим (т.е. земным) и метеоритным (т.е. космическим). Самородный чугун (теллурическое железо) образуется при взаимодействии железистой магмы с углем, графитом или при подземных пожарах угольных пластов на контакте с железной рудой. Метеоритное железо (феррит) содержит обычно включения троилита (FeS), муссонита SiC и когенита (Fe3С). В подавляющем большинстве случаев содержит много Ni (до 48 %), который распределен в метеоритах неравномерно, концентрируясь полосами, пересекающимися в шлифе под углом друг к другу. Это чередование светлых и темных полос (видманштеттова структура) характерно для метеоритного железа и особенно хорошо выявляется при травлении шлифов слабым спиртовым раствором HN03. Метеоритное железо изредка наблюдается в форме правильных кубов (гексаэдрическое железо) и октаэдров (октаэдрическое железо). Обычно в виде оплавленных масс неокругленной формы с характерными пальцеобразными впадинами на поверхности. Так называемое "палласово железо" содержит в себе включения оливина (MgFeSiO4). Мезосидерит содержит включения железа в массе силикатов. Две последние разновидности метеоритового железа относятся к так называемым железокаменным метеоритам.

Сера, S. Характерны алмазный блеск, желтый цвет, хрупкость; горит синим пламенем, распространяя запах сернистого ангидрида. Образуется при выветривании гипса CaS04. 2 Н2О и сульфидов с участием микробов, а также при окислении сероводорода, выделяющегося из вулканов: Н2S + О2 = 2Н2O + S. Используется для приготовления пороха, для вулканизации резины, в медицине и химии.

Месторождения: о. Сицилия (Италия), Средняя Азия (Шор-Су) и в Поволжье (район г. Твери).

Графит, С. Название от греч. "графо" - пишут; имеется в виду способность графита оставлять черную черту на бумаге. Образуется при кристаллизации из магмы при высоких температурах и низких давлениях, а также при природном коксовании углей на их контактах с магмой.

Разновидности: скрытокристаллический графит и аморфный шунгит. Графит жирен на ощупь, пишет по бумаге. От похожего молибденита отличается более черным цветом и меньшим блеском.

Применяется для изготовления электродов и огнеупорных блоков, графитовых блоков для атомных реакторов.

Месторождения: о. Цейлон, о. Мадагаскар, Австралия.

Алмаз, С. Название от греч. "адамас" - непреодолимый (имелась в виду необычайная твердость алмаза). Кристаллизуется из ультраосновной магмы в виде октаэдров при давления свыше 10 ГПа. и температурах около 2000 °С. Алмаз, вероятно, кристаллизуется из магмы первым на больших глубинах, после чего выносится жидкой магмой к дневной поверхности через жерла гигантских вулканов. Остатки таких вулканических трубок (диатрем), заполненных ультраосновной магмой, подвергшейся выветриванию в течение 140 - 150 млн. лет, находят в наше время в Якутии (Россия) и в ЮАР.

Смесь остатков оливина с продуктами его распада, представляющая собой зеленовато-синюю глину, называется кимберлитом.

Сульфиды

Земная кора содержит не более 0,15 % (по массе) минералов этой группы (230 минералов). С химической точки зрения эти соединения являются солями сероводородной кислоты. Существуют как сульфиды строго стехиометрического состава (FeS2, CuFeS2 и т.п.), так и соединения, в которых содержание серы меняется в определенных пределах (полисульфиды, например FeSx, где х = 1,0.1 - 1,14).

Характерны ионные кристаллические решетки. Большинство сульфидов тяжелые, мягкие, блестящие. Обладают высокой электропроводностью. В большинстве случаев гидротермального происхождения, иногда продукт кристаллизации сульфидной магмы, При выветривании в зоне окисления сульфиды переходят сначала в сульфаты, а затем в оксиды, гидрооксиды, карбонаты.

Сульфиды представляют собой рудную базу цветной металлургии и являются сырьем для производства серной кислоты. Так как сера придает стали красноломкость, присутствие сульфидов в железных рудах снижает их качество. Перед доменной плавкой пылеватые железные руды подвергают окускованию на агломерационных фабриках. В ходе агломерации удается удалить из руды до 99 % сульфидной серы.

Пирит, FeS2. Название от греч. "пир"- огонь (дает устойчивую искру при ударе металлическим предметом; использовался в получении искры в старинных ружьях). Синонимы: серный колчедан, железный колчедан. Ромбическая разновидность называется марказитом. Характерны соломенно-желтый цвет, черная черта, кубический, пентагон-додекаэдрический и октаэдрический облик кристаллов, штриховатость граней, ориентированная перпендикулярно к каждой соседней грани. Важнейшее сырье для получения серной кислоты; месторождения: Урал (Россия), Рио Тинто (Испания).

Пирротин, FeS. Название от греч. "пиррос" - красноватый. Синоним - магнитный колчедан. Троилит представляет собой стехиометрическую разновидность, встречающуюся в метеоритах. Обычно в пирротине несколько больше серы (FeSх, где х =1,01 - 1,14). Характерны металлический блеск, бронзово-желтый цвет, магнитность. Обычно в ассоциации с другими сульфидами гидротермальный. Сырье для производства серной кислоты. Вредная примесь в железных рудах.

Арсенопирит, FeAsS. Синонимы: ядовитый мышьяковый колчедан, миспикель. Данаит и глаукодот - разновидности, содержащие соответственно до 9 и до 22 % Со. Характерны: металлический блеск, оловянно-белый цвет, удлиненные шестоватые, игольчатые кристаллы призматического облика. Гидротермальный. Руда на As и Со. Многочисленные месторождения на Урале и в Сибири, г. Болидэн (Швеция). Присутствие арсенопирита, аурипигмента (Аs2S3), реальгара (AsS), скородита (FeAsO4. 2Н2O) и других мышьяковых минералов в железных рудах недопустимо, так как мышьяк является сильнейшим ядом, что препятствует изготовлению кастрюль, консервных банок, ложек, ножей и вилок из стали, содержащей хотя бы следы мышьяка. Изготовление из такой стали рельсов и балок также нежелательно, так как в дальнейшем постепенно заражается мышьяком весь металлолом страны. В Украине керченские бурые железняки содержат до 0,1 % As в составе скородита.

Халькопирит, CuFeS2. Название от греч. "халькос" - медь; "пир" - огонь. Синоним - медный колчедан. Кубическая разновидность называется талнахитом. Обычно встречается в сплошных массах и зернах. Гидротермальный. Характерны: металлический блеск, зеленовато-желтый цвет с яркой пестрой побежалостью, черная черта. Важнейшая медная руда.

Борнит, Cu5FeS4. Название дано в честь австрийского минералога Иоахима фон Борна (1742 - 1791 гг.). Синонимы: пестрая медная руда, павлинья руда. Встречается всегда в сплошных массах и в виде вкрапленных зерен. Гидротермальный. Характерны: металлический блеск, синяя побежалость. При царапании стальным ножом выявляется истинный медно-красный цвет минерала. Ценная медная руда. Месторождения: Бьютт (штат Монтана, США), Морокоча (Перу), Брадэн (Чили), Нельды (Казахстан).

Галенит, PbS. Название от лат. "галена" - свинцовая руда. Синоним - свинцовый блеск. Кристаллы имеют кубическую форму. Характерны: сильный металлический блеск, совершенная спайность по кубу, свинцово-серый цвет, мягкость. Важнейшая свинцовая руда. Месторождения: Турланское (Туркмения), Садонское (Сев. Кавказ Россия), Дальнегорск (Дальний Восток, Россия), Ледвилл (штат Колорадо, США), Брокен Хилл (Австралия), долина реки Миссисипи в штате Миссури (США). Присутствие галенита в железных рудах, как это имеет место на Алтае, недопустимо и совершенно обесценивает руду. Свинец легко восстанавливается в доменной печи, входит в швы кирпичной кладки в лещади и горне, что приводит к всплыванию кирпича, быстрому разрушению кладки и к тяжелым авариям, связанным с прорывами горна и вытеканием чугуна из доменной печи через ее фундамент, стенки горна.

Сфалерит, ZnS. Название от греч. "сфалерос" - обманчивый (сфалерит часто путают с другими минералами). Синоним: цинковая обманка.

Разновидности: черные марматит и кристофит, коричневый пршибрамит, светлый - клейофан. Гексагональный ZnS называется вюрцитом. Гидротермальный. Характерны: металлический блеск, тетраэдрический облик кристаллов, чем отличается от похожего по цвету вольфрамита (MnFeWО4). Важнейшая цинковая руда. Месторождения: Пршибрам (Чехия), Сантадер (Испания), Джоплин (штат Миссури, США). Присутствие сфалерита в железных рудах недопустимо. В доменной печи пары цинка и цинкита конденсируются в швах кладки шахты, что приводит к ее вспучиванию, к разрыву герметичного кожуха печи и к тяжелым авариям.

Молибденит, МоS2. Название от греч. "молибдос" - свинец (предполагали присутствие свинца в минерале; молибден был открыт позже и назван по названию минерала). Синоним - молибденовый блеск. Характерны: совершенная спайность в листоватых чешуйчатых агрегатах, сильный металлический блеск, Низкая твердость (царапается ногтем), пишет по бумаге. Светлее графита. Гидротермальный. Важнейшая руда на Мо. Месторождения: Тырныауз (Сев. Кавказ, Россия), Клаймэкс (штат Колорадо, США).

Киноварь, HgS. Название от индийского "кровь дракона" (связано с интенсивным красным цветом минерала). Синоним - циннабарит. В скрытокристаллических массах, называемых "печенковой рудой", и в виде намазок и налетов. Гидротермальная. Легко отличается по цвету и высокой плотности. Важнейшая руда на ртуть. Месторождения: Никитовка (Донбасс, Украина), Альмадэн (Испания), Идрия (Югославия), Нью Идрия и Нью Альмадэн (Калифорния, США).

Антимонит, Sb2S3. Название от лат. "антимониум" - сурьма.

Синонимы - сурьмяный блеск, стибнит. Обычно в виде призматических, игольчатых кристаллов с вертикальной штриховкой с ярким металлическим блеском. Совершенная спайность. Гидротермальный. Важнейшая руда на сурьму, месторождения: о. Шикоку (Япония), Раздольнинское (Красноярский край, Россия).

Галоидные соединения

Земная кора содержит около 0,5 % (по массе) галоидных соединений, которые имеют гидротермальное или осадочное происхождение. Флюорит встречается часто в пегматитовых жилах. С химической точки зрения эти минералы являются солями кислот: HF, HI, HBr, HCI. Характерны: стеклянный блеск, малые плотности, растворимость в воде. Галоидные соединения имеют ионные решетки.

Металлургия использует большие количества флюорита для разжижения шлаков. Галоидные соединения находят широкое применение в химии, в сельском хозяйстве (удобрения), в пищевой промышленности.

Флюорит, CaF. Название от итал. "флюоре" - течь (добавки флюорита разжижают металлургические шлаки). Синоним: плавиковый шпат. Гидротермальный или магматический (в пегматитовых жилах). Встречается в виде кубических и октаэдрических кристаллов, или в сплошных зернистых массах. Бесцветен или окрашен в зеленый, фиолетовый цвета. Характерна флюоресценция, т.е. свечение в рентгеновских лучах. Совершенная спайность по октаэдру.

Галит, NaCl. Название от греч. "галос" - море (имеется в виду получение соли выпариванием морской воды, содержащей в 1 литре 35 г солей и в том числе 78 % NaCI, 11 % МgСl2, остальное MgSO4, CaSO4, и др.). Синоним: каменная соль. Характерны растворимость в воде, весьма совершенная спайность по кубу. Часто в виде кристаллов кубической формы, или в сплошных массах. Обычно прозрачен, бесцветен, но примеси окрашивают галит в серый, желтый, красный и черный цвета. Используется как руда на натрий, а также для приготовления электролитов, в пищевой промышленности. Месторождения: г. Суэц (Египет), Величка (Польша), Пенджаб (Индия), Славяновское (Донбасс), Соликамское (Урал).

Сильвин, KCI. Назван по имени голландского врача Сильвия де-ля Баш. Осадочный. Обычно в виде сплошных зернистых масс, реже в виде кубов. Бесцветен, молочно-белого цвета, розовый и красный. Характерен парагенезис с галитом. Водные растворы имеют горький вкус. Используется в сельском хозяйстве в качестве калийного удобрения, а также в химической промышленности. Месторождения: Соликамск (Урал), Штасфурт (Германия), Нью-Мексико (США).

Карналлит, МgСl2. КСl. 6Н2O. Назван в честь немецкого инженера фон Карналла. Обычно в сплошных или зернистых агрегатах. Горький на вкус. Постепенно расплывается, поглощая воду из атмосферы. От похожего красного галита отличается тем, что при бурении стальным предметом скрипит. Характерны: красный цвет, жирный блеск, горький вкус, отсутствие спайности. Используется для производства магния, как калийное удобрение. Месторождения: Соликамское (Урал), Старобинское (Белоруссия), Прикарпатское (Украина).

Оксиды

Общая характеристика группы дана в табл. 4.1. Земная кора содержит до 17 % (по массе) оксидов. Наиболее распространены кварц (12,6 %), оксиды и гидрооксиды железа (3,9 %), оксиды и гидрооксиды AI, Мn, Ti, Сг. Напомним здесь, что главная масса железорудных и марганцевых руд имеют осадочное происхождение. Минералы группы оксидов являются рудной базой черной металлургии. Важнейшие рудные минералы железных и марганцевых руд: гематит (Fe2O3), магнетит (Fe3O4), бурый железняк (Fе2O3. Н2O), пиролюзит (МnО2), браунит (Мn2O3), гаусманит (Мn3O4), псиломелан (МnO2. МnО. n Н2O), манганит (МnO2. Мn(ОН)2.

Для кристаллических решеток оксидов характерна ионная связь. Оксиды Fe, Mn, Сг, Ti имеют полуметаллический блеск и темную окраску. Эти минералы непрозрачны. Для магнетита (Fe3O4) и ильменита (FеО. ТiO2) характерным свойством является их магнитность.

Магнетит, Fe3O4. Название по месторождению минерала в провинции Магнезия (Греция). Синоним - магнитный железняк. Важная железная руда. Магнетит в чистом виде (без пустой породы) содержит до 72,4 % Fe. В решетке магнетита находятся двух- и трехвалентное железо: FeO. Fе2О3. Вследствие изоморфизма позиции Fе2* и Fe3* могут занимать близкие по размеру катионы соответствующей валентности. Это дает огромную гамму минералов на базе магнетита: кальциевый магнетит (Са; Fe)О. Fе2О3, магномагнетит (Мg, Fe)0. Fе2О3, магнезиоферрит МgО. Fе2О3. Хромомагнетит FeO. (Fe, Сг)2О3, алюмомагнетит FeO. (Fe, А1)2О3. Титаномагнетиты могут содержать Ti в кристаллической решетке магнетита (TiO. Fе2О3 - ульвёшпинель) или в составе ильменита (FeO. ТiO2), с которым совместно кристаллизовался магнетит. Ясно, что механическое разделение Ti от Fe возможно только в ильмените.

В зоне окисления магнетит постепенно превращается в гематит под действием кислорода воздуха. Продукты окисления магнетита в природе называются полумартитами и мартитами.

Хотя в технике монооксид двухвалентного железа (FeO, вюстит) получают в ходе доменного процесса миллионами тонн, в природе он крайне редок (FeO, иоцит). В зоне окисления присутствуют, таким образом, только высшие оксиды железа: магнетит (Fe3O4), гематит (Fе2O3) и гидрооксиды (Fе2O3 nН2O).

Чаще всего магнетит образует сплошные зернистые массы черного цвета. Иногда он встречается в виде правильных октаэдрических кристаллов. От похожего хромита отличается черной чертой и сильной магнитностью.

Таблица 4.1 - Оксиды

Научное название минерала Другие названия Химическая формула Крист. решетка Блеск Цвет Твердость по Моосу
Магнетит Магнитный Fe3O4 Куб. Полумет. Черный 5,5-6
Гематит Красный железняк Fe2O3 Тригон. Полумет. Черный, стальной, красный 5,5-6
Гётит Бурый железняк Fe2О2. Н2О Ромб. Алм., полу метал. Темно-бурый 4,5-5,5
Хромит Хромистый железняк FeO. Сr2O3 Куб. Метал. Черный 5,5-7,5
Ильменит Титани-стый железняк FeO. TiO; Триг. Полуметал. Черный, стальной 5-6
Пиролюзит - МnO2; Тетраг. Полуметал. Черный 5-6
Браунит - Мn2O3 Полуметал. Черный 6
Корунд - Аl2O3 Триг. Стекл. Синеватый, желто-серый 9
Кварц - SiO2 Триг. Стекл. Бесцветный 7

Гематит, a- Fе2O3. Название связано с красным цветом минерала и его черты ("гематикос" - греч. - кровавый). Синоним - красный железняк. В природе и технике существует также тетрагональная разновидность этого оксида - маггемит (оксимагнетит), g-Fе2O3.

Встречается в виде сплошных плотных скрытокристаллических масс или в виде полосчатой руды, в которой рудное вещество располагается среди полос кварцевой пустой породы. Кристаллы имеют пластинчатый, ромбоэдрический облик. Цвет вишнево-красный, железо-черный, стально-серый. Черта вишнево-красная. Натечные разновидности с гладкой красной поверхностью называются красной стеклянной головой. Крупнокристаллическая разновидность темного стального цвета - железный блеск (спекулярит). Под действием горного давления возникают листоватые, чешуйчатые разновидности гематита - железная слюдка, железная сметана. Большая часть добываемой гематитовой руды относится к докембрийским осадочным рудам. Как уже указывалось, на долю гематитовых и мартитовых руд приходится в настоящее время до 90 % мировой выплавки чугуна. В чистом виде содержит до 70 % Fe. Крупнейшее месторождение – Кривой рог, Украина.

Гётит, Fе3О4. Н2O. Назван в честь немецкого поэта Гёте.Существует ряд бурых железняков, которые отличаются друг от друга количеством гидратной воды: гидрогематит Fe2O3.

В этом ряду лишь гётит имеет собственную фиксированную рентгенограмму. Гидрогётит, лимонит, ксантосидерит и лимнит представляют собой твердые растворы воды в гётите; гидрогематит - твердый раствор воды в гематите. Турьит - механическая смесь гидрогематита и гётита. Истинная формула бурого железняка может быть определена прокаливанием его пробы до постоянной массы. Отметим также натечную разновидность бурого железняка - бурую стеклянную голову, а также прозрачную слюдку-лепидокрокит (FеО. ОН). Подавляющая масса бурого железняка осадочного происхождения имеет оолитовую структуру. Важная железная руда. В чистом виде содержит до 66,1 % Fе.

Хромит, (FеО Сr2O3). Синоним: хромистый железняк. Магматический. Разновидности: алюмохромит (FеО. (Сг, А1)2O3, магнохромит (Fе., Мg)0. Сr2O3, хромпикотит (Fе, Мg)0. (Сг, А1)2O3. В паре со светлым змеевиком Мg6 (ОН)3 хромит дает структуры, по виду напоминающие крыло рябчика ("хромит - рябчик"). Встречается обычно в виде сплошных зернистых агрегатов или отдельных вкрапленных зерен. От похожего магнетита отличается бурой чертой и отсутствием магнитности. Важнейшая руда на хром. Месторождения: Кемпирсайское (Актюбинская область), Сарановское (Сев. Урал), Зимбабве (Африка).

Ильменит (FeO. TiO2). Название от Ильменских гор (Южный Урал). Синоним: титанистый железняк, пикроильменит (Мg, Fе)О. TiO2. Облик кристаллов толстотаблитчатый, ромбоэдрический. От похожего темного гематита отличается слабой магнитностью, буро-черной чертой. Магматического: Эксрсунд (Норвегия), Айрон-Маунтин (штат Вайоминг, США), Аккард-Лейк (Квебек, Канада).

Пиролюзит (МnО3). Название от греч. "пиро" - огонь и "люзис" - уничтожено (добавки пиролюзита уничтожают цветные окраски стекла). Хорошо ограненный пиролюзит называют полианитом. Осадочный. Характерные свойства: мягкий, оолитовый, землистый, черного цвета, пачкает руки. Важнейшая марганцевая руда, широко используемая при выплавке чугуна и стали, ферросплавов. Месторождения: Никопольское (Украина), Чиатурское (Грузия).

Браунит (Мn2O3). Название в честь немецкого химика К. Брауна. Разновидности содержат до 8 % SiO2 в виде механической тонкораспыленной примеси и до 10 % Fе, входящего в кристаллическую решетку минерала (Мn, Fе)2O3. Чаще всего наблюдается в виде склеенных зернистых агрегатов. Заметная спайность. От похожего пиролюзита отличается буроватым цветом черты, повышенной твердостью.

Корунд (А12O3). Название имеет индийское происхождение. Обычно в бочковидных, столбчатых, пирамидальных кристаллах синеватого, желто-серого, красноватого цвета. Прозрачные кристаллы корунда окрашены в различные цвета и являются драгоценными его разновидностями: лейкосапфир (бесцветный), рубин (красный), сапфир (синий), восточный топаз (желтый), восточный изумруд (зеленый) и восточный аметист (фиолетовый). Все перечисленные разновидности корунда имеют твердость 9, уступая лишь алмазу. В связи с этим восточные топаз, аметист и изумруд ценятся выше, чем обычные топаз (тв. 8), аметист (тв. 7) и изумруд (тв. 7,5 - 8). Легко определяется по цвету, форме кристаллов и высокой твердости. Широко используется в абразивной промышленности, где из корундового порошка изготавливают точильные круги, шлифовальные порошки.

Гидрооксиды алюминия гиббсит Аl(ОН)3, гидрагиллит Аl(OН)3, бёмит (АlO ОН) и диаспор (АlO. ОН) составляют основу боксита - ценного сырья, используемого для выплавки алюминия - или при производстве огнеупоров. Боксит кирпично-красного или красно-бурого цвета отличается от похожего бурого железняка красной чертой, а от красных глин тем, что не образует с водой пластичной массы. Месторождения боксита: Красная Шапочка, Североуральск, Ивдельск, Алапаевка (все на Урале),

Кварц (SiO2). Название от нем. "куерэрц" - поперечная руда (имеются в виду кварцевые жилы, располагающиеся обычно по трещинам поперек направления пластов горных пород). Кристаллы кварца имеют облик псевдогексагональных призм и дипирамид с характерной поперечной штриховкой граней призм. Земная кора содержит до 13 % (по массе) кварца, который является самым распространенным минералом на земле. Происхождение магматическое и гидротермальное. Легко узнается по форме кристаллов, раковистому излому и отсутствию спайности, высокой твердости.

Разновидности кварца: прозрачный бесцветный - горный хрусталь, прозрачные: желтый - цитрин, фиолетовый - аметист, дымчатый - раухтопаз (дымчатый кварц). Черный непрозрачный - морион.

Скрытокристаллическая непрозрачная разновидность (SiO2) с матовой поверхностью и восковым блеском называется халцедоном. Обычно белого цвета, натечный, аморфный, твердость 7, непрозрачный, спайность отсутствует. Разновидности, сердолик (красный), сардер (буро-коричневый), сапфирин (молочно-синий), плазма и хризопраз (зеленые), гелиотроп (зеленый с красными пятнами). Обычно халцедон имеет зональное строение; при этом пористость зон различна. При прохождении природных или технических водных растворов по порам происходит окрашивание этих зон. Так получается агат, т.е. зонально окрашенный халцедон.

Твердый аморфный гидрогель кварца (SiO2. Н2О) называется опалом. Его прозрачные разновидности драгоценны. Опал распознается по эмалевидному излому, высокой твердости.

Драгоценные разновидности кварца, халцедона, агаты и опалы широко используются в ювелирном деле. Кварц используется также в промышленности: в оптике, для изготовления пьезокварцевых пластинок для звукоснимателей, в точной механике для изготовления опорных подшипников и подпятников, для изготовления химической посуды, а также в огнеупорном и стекольном производстве.

Карбонаты, сульфаты, вольфраматы, фосфаты

Общая характеристика групп дана в табл. 4.2. Карбонаты, составляющие около 1,7 % от массы земной коры, являются осадочными или гидротермальными минералами. С химической точки зрения это соли угольной кислоты – Н2СО3. Карбонаты имеют ионные кристаллические решетки; характерны малые плотности, стеклянный блеск, светлая окраска (за исключением карбонатов меди), твердость 3-5, реакция с разбавленной НСl. Карбонаты широко используются в черной металлургии в качестве флюса и как сырье для производства огнеупоров и извести.

Земная кора содержит 0,1 % (по массе) сульфатов, имеющих в основном химическое осадочное происхождение и представляющих собой соли серной кислоты Н2SO4. Обычно это мягкие, легкие, светлые минералы. Внешне они похожи на карбонаты, но не реагируют с НСl. Сульфаты используются в химической и строительной промышленности. Они являются чрезвычайно вредной примесью в железных рудах, так как при агломерации удается удалить в газовую фазу не более 60 - 70 % сульфатной серы.

Фосфаты имеют магматическое (апатит) и осадочное (фосфорит) происхождение. Вольфраматы встречаются чаще в гидротермальных и пегматитовых жилах.

Кальцит, СаСО3. Название от греч. "кальк" - жженая известь.

Синоним - известковый шпат. Осадочный органогенный, гидротермальный. Кристаллы в форме ромбоэдров. Совершенная спайность по ромбоэдру. Вскипает под действием разбавленной НСl на холоду. Разновидности: прозрачный, бесцветный - исландский шпат, ромбический белый - арагонит. В основном из кальцита состоят толщи осадочных пород: мела, известняка, мрамора. Из кальцита состоит и известковый туф - травертин.

Черная металлургия потребляет миллионы тонн известняка в качестве флюса. Кроме того, известняк обжигают на известь в строительной промышленности. Исландский шпат используется в оптике для изготовления поляризаторов.

Магнезит, МgСО3. Назван в честь греческой провинции Магнезия. Синоним: магнезиальный шпат. Облик кристаллов ромбоэдрический с совершенной спайностью по ромбоэдру. В большинстве случаев встречается в виде зернистых агрегатов снежно-белого цвета с раковистым изломом ("аморфный" магнезит) и в серых удлиненных зернах. Гидротермальный. Важное сырье для производства огнеупорного кирпича и заправочных порошков. Использование доломитизированного известняка улучшает качество агломерата, окатышей и снижает вязкость доменных шлаков. Месторождения: Саткинское (Россия), Вейч (Австрия), Ляо Тун и Шен-Кин (Сев. вост. Китай), Квебекское (Канада).

Малахит, CuCO3 × Cu(OH)2. Название от греч. "малахэ" - мальва (имеется в виду зеленый цвет листьев мальвы). Азурит, 2CuCO3 × Cu(OH)2. Название от персидского "лазвард" - голубой. Натечные, землистые, концентрически скорлуповатые. Вскипает под действием разбавленной HCl. Используются как декоративные поделочные камни, руды на медь.

Сидерит, FeCO3. Название от греч. слова, обозначающего железо. Синоним - железный шпат. Обычно в зернистых желтовато-белых, буроватых массах. Реагирует с холодной НС1, капля которой окрашивается в зеленый цвет. Гидротермальный. Сидерит содержит до 48,3 % Fe и используется в качестве железной руды. Месторождения:

Бакальское (Юж. Урал), Керченское (Украина).

Родохрозит, MnCO3. Название от греч. "родон" - роза и "хрос" – цвет. Синоним: марганцевый шпат. Обычно в виде зернистых агрегатов розового, малинового цвета, черта белая. Реагирует с холодной HCl. Гидротермальный. Используется в качестве марганцевой руды. Месторождения: Чиатурское (Грузия), Полуночное (Сев. Урал), Оброчище (г. Варна, Болгария).

Гипс, CaSO4 × 2H2O. Название от греч. термина, относившегося к обожженному гипсу и к штукатурке. Разновидности: волокнистый гипс - селенит; пластинчатый, прозрачный - "марьино стекло"; тонкозернистая плотная массивная разновидность - алебастр. Технический алебастр (CaSO4 × 0,5H2O) получают обжигом гипса. Характерны таблитчатые кристаллы с совершенной спайностью, двойники срастания и другие, напоминающие розы. От похожего ангидрида отличается меньшей твердостью. От кальцита - отсутствием реакции с НС1. Используется в строительном деле, в химии и в медицине, а также для изготовления скульптур и предметов искусства. Месторождения: на западном склоне Урала, Артемовское (Донбасс) и во многих других районах.

Барит, ВаSO4. Название от греч. "барос" - тяжесть. Синоним тяжелый шпат. Встречается в виде белых, серых таблитчатых кристаллов с совершенной спайностью, а чаще в виде зернистых агрегатов. Легко отличается от карбонатов по высокой плотности и отсутствию реакции с НС1; от других сульфатов и от силикатов - по плотности. Используется в нефтяном деле для цементации рыхлых пород в стенках скважин, в химии, а также для изготовления "баритовой штукатурки", поглощающей рентгеновские лучи в лабораториях и больницах. Вредная примесь в железных рудах. Месторождения: в Грузии, Туркмении, Центр. Казахстане и на Южном Урале.

Вольфрамит, (Mn, Fe)WO4. Название от нем. "волчья пена" (примесь этого минерала к оловянным рудам дает при их проплавке шлак цвета волчьей шерсти). Синоним: Волчец. Обычно в виде толстотаблитчатых и призматических кристаллов со штриховкой на гранях или в виде зернистых агрегатов. Характерны буровато-черный цвет, бурая черта и высокая плотность. Важнейшая руда на вольфрам. Используется в металлургии для получения твердых сплавов и быстрорежущих инструментов, а также в электротехнической промышленности для изготовления нитей накаливания в электролампах и рентгеновских трубках. Месторождения: Юнань (КНР), на полуострове Малакка и в Бирме, Корнуэл (Англия), Бейра-Бейкс (Португалия), Тана (Боливия), Боулдэр (Колорадо, США).

Шеелит, CaWO4. Назван в честь шведского химика Шееле (1742 -1786 гг.). Встречается в дипирамидальных, псевдооктаэдрических кристаллах, а также в виде неправильной формы включений желтоватого цвета с алмазным блеском и явной спайностью. Вторая по значению вольфрамовая руда. Месторождения: Ср. Азия, Саксония, Циннвальд (Чехия), Пьемонт (Италия), Андалузия (Испания), Хуанкайя (Перу), штаты Калифорния, Аризона, Невада, Коннектикут (США).

Апатит. Название от греч. "апатао" - обманываю (похож на драгоценный берилл (изумруд) и турмалин, что затрудняло диагностику). Наиболее распространен фторапатит Ca53F или 3 × CaF2, но встречается и хлорапатит - Ca53Cl или 3 × CaCl2. Встречается в виде шестигранных призм и игл бледно-зеленого, изумрудно-зеленого и голубого цвета. Излом неровный, раковистый. Широко распространен также в виде зернистых, плотных масс белого цвета. От драгоценных изумруда и аквамарина отличается меньшей твердостью (апатит не царапает стекла).

Вместе с виванитом Fe32 × 8H2O ("синяя земля") апатит является обычно основным носителем фосфора в железных рудах; присутствие этих минералов в железной руде затрудняет металлургический передел, обесценивает руду, так как фосфор придает стали хладноломкость.



Попыткисистематизации минералов на различной основе предпринимались еще в античном мире. Первоначально (от Аристотеля до Ибн Сины и Бируни) минералы систематизировались по внешним признакам. Со 2-ой половины XIX в. исключительное распространение получили химические классификации, а в ХХ в. – кристаллохимические. В настоящее время наиболее распространена классификация минералов, в основу которой положен химический принцип (химический состав, тип химических соединений, характер химической связи). Более мелкие таксоны внутри классов выделяют с учетом структурных особенностей минералов (таблица 1.1).

Краткая характеристика классов минералов

Самородные элементы . В самородном состоянии в природе известно около 40 химических элементов, но большинство из них встречаются очень редко. Нахождение элементов в самородном виде связано со строением их атомов, имеющих устойчивые электронные оболочки. Химически инертные в природных условиях элементы называются благородными.

В виде самородных металлов встречаются Au, Pt, Ag, Cu, Fe, Pb, Sn, Hg, Zn, Al, типичны в природном состоянии и сплавы нескольких металлов, например (Pt+Fe), (Pt+Fe+Ni), (Au+Ag) и др. Из самородных полуметаллов наиболее распространены As, Sb, Se, Te, из неметаллов – различные модификации С (графит, алмаз) и S. Графит и сера часто образуют крупные месторождения.

Халькогениды (сернистые соединения ) представляют собой соединения катионов с серой (сульфиды). В природе известно около 200 сернистых соединений, но только 20 из них встречаются в значительных количествах. Наиболее распространены соединения с Fe, Cu, Pb, Zn, Sb, Hg.

Цвет сульфидов разнообразный (свинцово-серый, черный, латунно-желтый, медно-желтый, оранжевый, желтый, красный). Твердость варьирует от 1 до 6-6,5, плотность меняется от средней до высокой.

Основная масса сульфидов образуется гидротермальным путем, известны также сульфиды магматического и метаморфического генезиса, некоторые являются результатом экзогенных процессов.

Сульфиды – важные рудные минералы, сырье для получения цветных, тяжелых и некоторых редких и рассеянных металлов, их сплавов.

Таблица 1.1

Классификация минералов

Основные типы минералов

Классы

Подклассы

Группы

I.Простые

вещества

1.Самородные элементы

1.Самородные металлы

2.Самородные неметаллы

3.Самородные полуметаллы

Гр. платины, гр. меди

Гр. серы, гр. графита

Гр. мышьяка

II.Халькогениды сернистые соединения)

1.Сульфиды

1.Простые сульфиды

2.Сложные сульфиды

Гр. пирита

Гр. халькопирита

III.Кислород-ные соединения

1.Оксиды и гидрооксиды

1.Сульфаты

2.Фосфаты

3.Карбонаты

4.Силикаты

1.Простые ок-сиды и гидрооксиды

2.Сложные оксиды

1.Островные

2.Цепочечные

3.Ленточные

4.Листовые

5.Каркасные

Гр. гематита, гр. корунда, гр. кварца

Гр. магнетита

Гр. гипса, гр. ангидрита, гр. барита

Гр. апатита

Гр. кальцита, гр. доломита

Гр. оливина

Гр. пироксенов

Гр. амфиболов

Гр. слюд, гр. талька, гр. глин, гр. хлорита, гр. серпентина

Гр. полевых шпатов, гр. фельдшпатоидов

IV.Галогениды (галоидные соединения)

1.Хлориды

2.Фториды

Гр. галита

Гр. флюорита

Кислородные соединения. Оксиды и гидрооксиды – соединения элементов с кислородом, в гидрооксидах присутствует также вода. В земной коре на долю этих минералов приходится около 17%, из них на долю кремнезема (SiO 2) – 12,6%, на долю оксидов и гидрооксидов Fe – 3,9%. К числу распространенных минералов относятся также окислы и гидроокислы алюминия, марганца и окислы титана.

Физические свойства этих минералов различны, для большинства из них характерна высокая твердость. Происхождение магматическое, пегматитовое, гидротермальное, но большинство окислов образуется в результате экзогенных процессов в верхних частях литосферы. Многие эндогенные минералы при выветривании разрушаются и переходят в окислы и гидроокислы, как более устойчивые соединения в условиях поверхности. Будучи физически и химически устойчивыми, многие окислы накапливаются в россыпях.

Сульфаты – природные соли серной кислоты. В природе известно около 190 минеральных видов, которые представляют собой простые безводные соли или сложные соли с конституционной и кристаллизационной водой. Основная структурная единица – анионный радикал 2 , среди катионов видообразующими являются Ca 2+ , Ba 2+ , Mg 2+ и др.

Цвет сульфатов обусловлен примесями ионов-хромофоров и наличием структурных дефектов. Характерны низкая твердость (2-3,5), хорошая растворимость в воде.

Сульфаты формируются в окислительных условиях на участках распространения сульфидных месторождений, в корах выветривания, а также как хемогенные отложения содовых, сульфатных, соляных озер и крупных водных бассейнов. Эндогенные сульфаты типичны для средне- и низкотемпературных гидротермальных жил, реже отмечаются как продукты вулканической деятельности.

Фосфаты – соли ортофосфорной кислоты. В природе известно свыше 230 простых и сложных, водных и безводных соединений. Основная структурная единица – анионный радикал 3- ; среди катионов видообразующими являются Ca 2+ , Fe 2+ , Fe 3+ , Mg 2+ ,TR 3+ и др. Встречаются фосфаты в виде листовато-уплощенных и таблитчатых кристаллов или в виде чешуйчатых агрегатов. Характерные свойства: бесцветны или интенсивно окрашены в синий цвет различных оттенков; люминесценция; твердость – 3-5, плотность – 1,6-7,0 г/см 3 . Происхождение: магматическое, гидротермальное, экзогенное.

Карбонаты – соли угольной кислоты. Ведущие катионы Ca 2+ , Fe 2+ , Na + , Mg 2+ , Ba 2+ , Cu 2+ , Zn 2+ и др. Это многочисленная группа (около 120 минеральных видов), из которых многие имеют значительное распространение. Встречаются карбонаты в виде хорошо ограненных кристаллов значительных размеров; плотных, зернистых масс, слагающих мощные мономинеральные толщи; радиально-лучистых, игольчатых, натечных, почковидных агрегатов и тонких смесей с другими минералами.

Большая часть карбонатов белые или бесцветные; окраску карбонатам придают хромофорные ионы типа Fe 2+ , Mn 2+ , TR 3+ , Cu 2+ и тонкодисперсные механические примеси (гематит, битум и т.д.). Твердость около 3-4,5, плотность невелика, за исключением карбонатов Zn, Pb, Ba.

Важным диагностическим признаком является действие на карбонаты кислот (HCl, HNO 3), от которых они в той или иной степени вскипают с выделением углекислого газа.

По происхождению карбонаты осадочные (биохимические или химические осадки), осадочно-метаморфические; поверхностные, характерные для зоны окисления; низко- и среднетемпературные гидротермальные; метасоматические. Иногда они кристаллизуются из кальцитовых и содовых вулканических лав магматического происхождения.

Карбонаты – важнейшие неметаллические полезные ископаемые, а также ценные руды на Zn, Pb, Fe, Cu и др. металлы. Известняки, доломиты, мраморы – почти мономинеральные горные породы, сложенные карбонатами.

Силикаты – соли кремниевой кислоты. На долю силикатов приходится до 75% массы земной коры и около 25% минеральных видов. В природе известно свыше 700 природных силикатов, включая важнейшие породообразующие минералы (полевые шпаты, пироксены, амфиболы, слюды и др.).

Основная структурная единица – одиночные изолированные тетраэдрические радикалы 4- . Ведущие катионы Na + , Mg 2+ , Al 3+ , Ca 2+ , Fe 2,3+ , К + , Мn 2+ .

Структурное разнообразие силикатов определяется строением кремнекислородных радикалов. Различают силикаты с островными, цепочечными, ленточными, листовыми, каркасными радикалами.

Островные силикаты, т.е. силикаты с изолированными тетраэдрами 4- и изолированными группами тетраэдров. В силикатах с изолированными тетраэдрами 4- каждый из четырех кислородов имеет одну свободную валентность. Между собой тетраэдры непосредственно не связаны, связь происходит через катионы Mg, Fe, Al, Zr и др. Силикаты с островной структурой имеют изометрический облик и характеризуются повышенной твердостью и плотностью (оливин).

Цепочечные силикаты характеризуются структурой, в которой тетраэдры сочленяются в виде непрерывных обособленных цепочек. Радикалы 4- , 6- , катионы Ca 2+ , Mg 2+ , Fe 3+ , Al 3+ , Na + (пироксены).

Ленточные силикаты имеют тетраэдры в виде сдвоенных цепочек, лент, поясов. Радикал 6- , катионы Ca 2+ , Mg 2+ , Fe 3+ , Al 3+ , Na + , (амфиболы). Часто содержат ионы (OH) ‾ 2.

Силикаты цепочечной и ленточной структур обычно вытянуты, для них характерны призматические и столбчатые кристаллы, игольчатые и волокнистые агрегаты.

Листовые силикаты – силикаты с непрерывными слоями кремнекислородных тетраэдров. Радикал такой структуры 2- . Слои тетраэдров обособлены друг от друга и связаны катионами Mg 2+ , Fe 3+ , Al 3+ , Ni + и др. Содержат ионы (OH) 2 , (OH, F) 2 (тальк, серпентин, глинистые минералы, слюды, хлориты).

Листовые силикаты характеризуются весьма совершенной спайностью и листоватым обликом минералов. Это объясняется тем, что сами слои кремнекислородных тетраэдров являются очень прочными, а связь между ними, осуществляемая через катионы, менее прочная.

Каркасные силикаты – силикаты с непрерывными трехмерными каркасами из алюмо- и кремнекислородных тетраэдров. В этом случае все кислороды у тетраэдров являются общими, их валентности использованы на связь с катионами, каркас нейтрален. Радикал такого каркаса 0 . Именно такой каркас отвечает структуре кварца (кварц по этой причине можно относить к силикатам с каркасной структурой).

Алюмокислородные радикалы m- образуются в результате замещения четырехвалентного кремния трехвалентным алюминием, что вызывает появление одной свободной валентности и влечет за собой необходимость вхождения других катионов. Видообразующими катионами силикатов являются Na + , K + , Ca 2+ (полевые шпаты, фельдшпатиды).

Большинство силикатов бесцветные или белые. Силикаты Fe, Mn, Ni, Zr и др. элементов окрашены в различные цвета. Блеск стеклянный до алмазного. Спайность совершенная по двум-трем направлениям, весьма совершенная, плотность от 2,0 до 6,5 г/см 3 , твердость 1-8.

Силикаты – полигенные минералы. Они кристаллизуются из магмы, образуются в процессе метаморфизма, типичны для зон окисления рудных месторождений.

Галогениды (галоидные соединения ). Хлориды – соли соляной кислоты. Известно порядка 100 минеральных видов. Собственная окраска хлоридов белая; чистые кристаллы бесцветны и прозрачны. Желтые, бурые, серые, красные и др. цвета галоидным соединениям придают механические примеси: гидроокислы железа, органические вещества и др. Хлориды имеют невысокую твердость – 1,0-3,5; плотность варьирует от 1,5-2,5 до 6,5-8,3 г/см 3 , хорошо растворяются в воде, гигроскопичны.

Образуются хлориды преимущественно хемогенно-осадочным путем – при испарении воды соляных и содовых озер или морских бассейнов и лагун.

Фториды – природные соединения элементов Na, K, Ca, Mg и др. элементов с фтором. Известно до 59 минеральных видов, большая часть из которых распространена ограничено. Наиболее ценным минералом является флюорит, встречающийся в месторождениях гидротермального, пневматолитового и грейзенового типов.

В таблице 1.2 приведена характеристика основных породообразующих минералов и минералов, наиболее широко распространенных в природе и имеющих практическую ценность.

Вопросы для самопроверки

    Дайте определение понятию минерал.

    Какое состояние могут иметь минералы в природных условиях?

    Чем отличаются минералы с кристаллическим и аморфным строением?

    Что называется минеральным агрегатом? Какие бывают агрегаты?

    Перечислите важнейшие физические свойства минералов.

    Что такое спайность? Ее причины.

    Какие методы существуют для определения твердости?

    Назовите минералы шкалы твердости Мооса.

    Каким бывает излом минералов?

    Каковы причины окраски минералов?

    Что такое побежалость? Для каких минералов она характерна?

    Как отличаются минералы по блеску?

    Как определяются магнитные свойства минералов?

    По каким признакам можно систематизировать минералы? Какой признак для классификации минералов является наиболее научно обоснованным?

    Какие процессы минералообразования относятся эндогенным и какие к экзогенным?

Задание:

    Используя табл. 1.2, бисквиты, стекла, реактивы и пр. определить образцы из коллекции, предоставленной преподавателем.

Поделиться