Понятие звезды. Параметры звезд

Звёзды

Звёзды – это горячие светящиеся небесные тела той же природы, что и Солнце. По многим параметрам и Солнце является типичной звездой. Однако внешне оно кажется гораздо больше и ярче остальных, так как расположено ближе к Земле. Даже Проксима Центавра, ближайшая к Земле звезда в 272­000 раз дальше от Земли, чем Солнце. По этой причине звезды кажутся далекими светящимися точками, рассыпанными по небу. Увидеть их можно только ночью, а днем на фоне яркого солнечного света они не видны. Невооруженным взглядом видно около 6000 звезд на небе, по 3000 – в каждом полушарии. В целом, в нашей Галактике более 200 миллиардов звезд. Бессмысленно пытаться сосчитать их всех или давать им имена. Даже те, которые видны в крупные телескопы, не все изучены или обозначены. Самые яркие и известные звезды – это Альдебаран, Ригель, Денеб, Сириус, Антарес, Малая Медведица и некоторые другие.

Как только ученые начали получать спектры звезд, их стали классифицировать по типам. Так, например, существуют звезды главной последовательности . Это наиболее многочисленный класс звезд и именно к нему относится Солнце. Ученные выделяют также коричневых и белых карликов, красных гигантов, переменных и нейтронных, двойных и рассеянных, и некоторые другие типы звезд. Теория о коричневых карликах появилась в середине XX века. Это особый тип звезд, в которых ядерные реакции не компенсируются потерей энергии на излучение. Когда звезды сжимаются до тех пор пока давление не вырожденных электронов не уравновесит гравитацию, они превращаются в белых карликов . Размер звезды уменьшается в сотни раз, а плотность начинает в миллионы раз превышать плотность воды. Красные гиганты – это звезды с низкой эффективной температурой, но с большой совместимостью. У переменных звезд за всю историю наблюдения хотя бы раз менялся блеск. Нейтронные звезды появляются на поздней стадии эволюции, когда давление электронов не сдерживает сжатия ядра и большинство частиц превращается в нейтроны. Двойные звезды – это две гравитационно-связанные звезды, обращающиеся вокруг общего центра масс. Рассеянные звезды – это скопления звезд, расположенных довольно далеко друг от друга.

В центре всех звезд есть частицы газа и водорода, которые ударяясь друг об друга, выделяют огромное количество ядерной энергии. В результате у них появляется яркий блеск. Несмотря на то, что они кажутся нам неподвижными, звезды несутся в космическом пространстве с колоссальной скорость. И все же, звезды не живут вечно. Они постоянно возникают из облака газа и пыли, но их жизненный цикл ограничен. Звезда начинает изменяться и умирать, когда водородное топливо в её ядре заканчивается. Некоторые массивные звезды заканчивают свое существование грандиозным взрывом появляются сверхновые звезды. За последние 1000 лет в нашей Галактике было зафиксировано появление всего лишь трех таких звезд.

Благодаря развитию наблюдательной техники, астрономы могут исследовать не только видимое, но и невидимое глазу излучение звезд. На сегодняшний день, многое уже известно о строении и эволюции звезд, но многое остается неизведанным и непонятным.

Ещё Сенека говорил, что если бы осталось на Земле единственное место, с которого можно увидеть звёзды, все люди стремились бы в это место. Красота и загадочность звёздного неба привлекает внимание людей с глубокой древности. Даже с минимумом фантазии можно составить из мерцающих звёзд фигуры и целые сюжеты на самые разнообразные темы. Совершенства в этом мастерстве достигли астрологи, связавшие звёзды не только между собой, но и усмотревшие связь звёзд с земными событиями.

Даже не обладая художественным вкусом и не поддаваясь шарлатанским теориям, трудно не поддаться обаянию звёздного неба. Ведь эти крохотные огоньки на самом деле могут быть гигантскими объектами или состоять из двух или трёх звёзд. Часть видимых звёзд может уже не существовать — ведь мы видим свет, излучённый некоторыми звёздами тысячелетия назад. И, конечно, каждый из нас, поднимая голову к небу, хоть раз, да задумывался: а вдруг у какой-то из этих звёзд живут существа, похожие на нас?

1. Днём с поверхности Земли звёзды не видны вовсе не потому, что светит Солнце — в космосе на фоне абсолютно чёрного неба звёзды отлично видны даже недалеко от Солнца. Видеть звёзды с Земли мешает освещённая Солнцем атмосфера.

2. Рассказы о том, что днём звёзды можно увидеть из достаточно глубокого колодца или от основания высокой печной трубы — досужие домыслы. И из колодца, и в трубе виден только ярко освещённый участок неба. Единственная труба, в которую днём можно увидеть звёзды — телескоп. Кроме Солнца и Луны днём в небе можно увидеть Венеру (и то нужно точно знать, куда смотреть), Юпитер (сведения о наблюдениях весьма противоречивы) и Сириус (очень высоко в горах).

3. Мерцание звёзд также следствие атмосферы, которая никогда, даже в самую безветренную погоду, не бывает статичной. В космосе звёзды светят монотонным светом.

4. Масштабы космических расстояний можно выразить в цифрах, но представить их наглядно очень сложно. Минимальную единицу расстояния, которую применяют учёные, т. н. астрономическую единицу (примерно 150 млн. км), соблюдая масштаб, можно представить следующим образом. В один угол лицевой линии теннисного корта нужно положить мяч (он сыграет роль Солнца), а в другой — шарик диаметром 1 мм (это будет Земля). Второй теннисный мяч, изображающий Проксиму Центавра, ближайшую к нам звезду, нужно будет поместить примерно в 250 000 км от корта.

5. Три самые яркие звезды на Земле можно увидеть только в южном полушарии. Самая яркая звезда нашего полушария Арктур занимает лишь четвёртое место. А вот в десятке яркости звёзды расположились более равномерно: пять находятся в северном полушарии, пять в южном.

6. Примерно половину наблюдаемых астрономами звёзд составляют двойные звёзды. Часто их изображают и представляют как две близко расположенные звезды, однако это слишком упрощённый подход. Компоненты двойной звезды могут располагаться очень далеко друг от друга. Главное условие — вращение вокруг общего центра масс.

7. Фраза классика о том, что большое видится на расстоянии, к звёздному небу не применима: самую крупную из известных современной астрономии звёзд UY Щита можно увидеть только в телескоп. Если поместить эту звезду на место Солнца, она заняла бы весь центр Солнечной системы вплоть до орбиты Сатурна.

8. Самой тяжёлой и по совместительству самой яркой из изученных звёзд является R136a1. Её тоже не видно невооружённым взглядом, хотя вблизи экватора можно рассмотреть в небольшой телескоп. Эта звезда находится в Большом Магеллановом Облаке. R136a1 в 315 раз тяжелее Солнца. А её светимость превышает солнечную в 8 700 000 раз. За время наблюдений Полярная стала значительно (по некоторым данным, в 2,5 раза) ярче.

9. В 2009 году с помощью телескопа Хаббл международная группа астрономов обнаружила в Туманности Жука объект, температура которого превышала 200 000 градусов. Саму звезду, находящуюся в центре туманности, увидеть не удалось. Предполагают, что это ядро взорвавшейся звезды, сохранившее изначальную температуру, а сама Туманность Жука — её разлетающиеся внешние оболочки.

10. Температура самой холодной звезды составляет 2 700 градусов. Эта звезда — белый карлик. Она входит в систему с ещё одной звездой, которая горячее и ярче напарницы. Температура самой холодной звезды вычислена «на кончике пера» — учёным пока не удалось ни увидеть звезду, ни получить её изображения. Известно, что система располагается в 900 световых годах от Земли в созвездии Водолея.

Созвездие Водолея

11. Полярная звезда вовсе не самая яркая. По этому показателю она входит лишь в пятый десяток видимых звёзд. Её известность связана лишь тем, что она практически не меняет своё положение на небе. Полярная звезда в 46 раз больше Солнца и в 2 500 раз ярче нашего светила.

12. В описаниях звёздного неба употребляются либо огромные числа, либо вообще говорится о бесконечности числа звёзд в небе. Если с научной точки зрения такой подход вопросов не вызывает, то в бытовом плане всё иначе. Максимальное количество звёзд, которое может увидеть человек с нормальным зрением, не превышает 3 000. И это в идеальных условиях — при полной темноте и ясности неба. В населённых же пунктах, особенно крупных, вряд ли удастся насчитать и полторы тысячи звёзд.

13. Металличность звёзд это вовсе не содержание в них металлов. Это содержание в них веществ тяжелее гелия. Металличность Солнца равна 1,3%, а металличность звезды под названием Альгениба составляет 34%. Чем звезда металличнее, тем она ближе к концу своей жизни.

14. Всё звёзды, которые мы видим в небе, относятся к трём Галактикам: нашему Млечному пути и галактикам Треугольника и Андромеды. Причём это касается не только звёзд, видимых невооружённым взглядом. Лишь в телескоп Хаббла удалось рассмотреть звёзды, расположенные в других галактиках.

15. Не следует смешивать галактики и созвездия. Созвездие — понятие исключительно зрительное. Звёзды, которые мы относим к одному созвездию, могут располагаться в миллионах световых лет друг от друга. Галактики же похожи на архипелаги — звёзды в них расположены относительно близко друг к другу.

16. Звёзды очень многообразны, но по химическому составу различаются очень мало. В основном они состоят из водорода (около 3/4) и гелия (около 1/4). «С возрастом» гелия в составе звезды становится больше, водорода — меньше. На все остальные элементы обычно приходится менее 1% массы звезды.

17. Придуманную для запоминания последовательности цветов в спектре поговорку про охотника, желающего знать, где сидит фазан, можно применить и к температуре звёзд. Красные звёзды холоднее всех, синие — самые горячие.

18. Несмотря на то, что первые карты звёздного неба с созвездиями составляли ещё во II тысячелетии до н. э., чёткие границы созвездия приобрели лишь в 1935 году после обсуждения, длившегося полтора десятка лет. Всего созвездий 88.

19. С неплохой точностью можно утверждать, что чем «утилитарнее» название созвездия, тем позже оно описано. Древние называли созвездия именами богов или богинь, либо давали звёздным системам поэтичные имена. Современные названия проще: звёзды над Антарктидой, к примеру, без затей объединили в Часы, Компас, Циркуль и т. п.

20. Звёзды — популярная составная часть государственных флагов. Чаще они присутствуют на флагах в качестве украшения, но иногда в них есть и астрономическая подоплека. На флагах Австралии и Новой Зеландии изображено созвездие Южного Креста — самое яркое в Южном полушарии. Причём новозеландский Южный Крест состоит из 4 звёзд, а австралийский — из 5. Пятизвёздочный Южный Крест является частью флага Папуа — Новой Гвинеи. Бразильцы пошли гораздо дальше — на их флаге изображён участок звёздного неба над городом Рио-де-Жанейро по состоянию на 9 часов 22 минуты 43 секунды 15 ноября 1889 года — момент, когда была провозглашена независимость страны.

Введение 3

    Понятие звезды. Параметры звезд. Строение звезд 4

    Рождение звезд 6

    Старение и смерть звезд 8

    Эволюция звезд 10

    Двойные звезды 12

заключение 13

список литературы 14

Введение

В течение многих тысячелетий астрологи сверяли по звёздам жизни отдельных людей и целых государств, хотя и предупреждали при этом, что роль звёзд в предначертании судьбы велика, но не абсолютна. Звёзды советуют, а не приказывают, говорили они.

Но шло время, и люди стали всё чаще смотреть на звезды с другой, менее романтической точки зрения. Антуан де Сент-Экзюпери сказал об этом: «Вы проинтегрировали орбиту звезды, о жалкий род исследователей, и звезда перестала быть для вас живым светилом». Действительно, звёзды стали рассматриваться как физические объекты, для описания которых вполне достаточно известных законов природы.

Астрономы не в состоянии проследит жизнь одной звезды от начала и до конца. Даже самые короткоживущие звёзды существуют миллионы лет – дольше жизни не только одного человека, но и всего человечества. Однако учёные могут наблюдать много звёзд, находящихся на самых разных стадиях своего развития, - только что родившиеся и умирающие. По многочисленным звездным портретам они стараются восстановить эволюционный путь каждой звезды и написать её биографию.

Их можно увидеть темной, безоблачной ночью на небе тысячи. Звезды- это огромные раскаленные газовые шары, такие же, как наше Солнце, но светят они намного слабее Солнца, потому что расположены гораздо дальше от нас. Даже от ближайших к нам звезд свет идет целые годы. Мы смотрим на звезды сквозь слой воздуха, который все время находиться в движении, поэтому свет звезд непостоянен – нам кажется, что они мерцают.

Понятие звезды. Параметры звезд. Строение звезд.

Более девяти десятых вещества нашей Галактики сосредоточено в звездах; есть галактики, в которых на звезды приходится 99,9% массы. Мир звезд многообразен, но все же большинство из них подобно нашему Солнцу.

Солнце и любая другая подобная ему звезда - это сферическая масса горячего газа, удерживаемого его собственным тяготением. Тяготение стремится сжать газ, сблизить, насколько это возможно, все его частицы. Давление горячего газа действует, очевидно, в противоположном направлении, оно стремится расширить газ. Сила тяготения направлена к центру звезды, а сила давления наружу; в их противоборстве устанавливается и поддерживается равновесие, в котором звезда может пребывать миллионы и миллиарды лет. В недрах Солнца давление достигает десяти миллиардов атмосфер, а температура - четырнадцати миллионов градусов. Высокое давление и высокая температура поддерживаются в центральной области благодаря непрерывно идущим ядерным реакциям превращения водорода в гелий.

ПАРАМЕРТЫ

Основные параметры звёзд – масса, радиус, светимость, эффективная температура, спектральный класс, звёздная величина. Точные числовые значения некоторых параметров звёзд из-за их значительной удалённости определить крайне сложно, а порой даже невозможно, поэтому при их описании часто пользуются относительными значениями, например в сравнении с Солнцем, как типичной звёздой главной последовательности.

Масса – это основной параметр, который определяет всю эволюцию звезды, процессы, происходящие внутри неё, продолжительность жизни, а также другие параметры на всех этапах ее существования. Массы звёзд составляют приблизительно от 1/20 до 100 масс Солнца. Нижний предел – это фактически то минимальное значение массы, при котором благодаря гравитационной энергии ядро будущей звезды способно нагреться до той температуры, при которой возможно поддержание термоядерной реакции.

Радиусы звёзд варьируются в более широких пределах, нежели массы. Звёзды-карлики могут иметь радиусы в 10 раз меньше солнечного, в то время как звёзды-гиганты в 1000 раз больше. Как следствие, светимость может быть как в 10 тыс. раз меньше, так и в 100 тыс. раз больше, чем у Солнца. В зависимости от стадии эволюции размеры звезды могут существенно различаться.

Важной характеристикой звезды, как объекта на небе, является звёздная величина . Это мера яркости звезды, наблюдаемой с Земли. Невооруженным глазом при благоприятных условиях можно рассмотреть звёзды до 6-й величины, а самые яркие звёзды на небе имеют звездную величину равную 0 и –1. К примеру, звёзды всем известного ковша Большой Медведицы – это звёзды в среднем 2-й звёздной величины. Помимо этого параметра, существует ещё и абсолютная звёздная величина . Она отражает собственную светимость звезды и определяется как визуальная звёздная величина, которую эта звезда имела бы при наблюдении с расстояния 10 парсек (1 парсек = 3,2616 св. года).

СТРОЕНИЕ

Звёзды – раскаленные газовые шары, источником энергии и излучения в которых являются термоядерные реакции, главным образом превращение водорода в гелий. Этот процесс происходит в центре звезды, где температура достигает 15 млн. кельвинов (0,01 гр. Цельсия соответствует 273,16 кельвинам). Всё вещество при такой температуре и значительном давлении фактически находится в состоянии плазмы, ионизированного газа. Процесс протекания термоядерной реакции несколько отличается у звёзд массы Солнца и у более массивных (в нем принимают участие более тяжелые элементы, такие как углерод и азот), однако результом везде является синтез ядра гелия из четырёх ядер водорода при выделении энергии. Содержание водорода по массе в звёздах класса Солнца составляет примерно 70-75%, остальное – гелий и другие элементы, содержание которых обычно не превышает 1,5-2%.

Видимая поверхность звезды – фотосфера . Температура фотосферы связана с такой характеристикой звезды, как спектральный класс . Всего основных семь классов: O, B, A, F, G, K, M (плюс десять подклассов от 0 до 9). Также существует разделение на C0-C9 (углеродные), S-звезды (с полосами ZrO в спектре) и ещё несколько не часто встречающихся. O – самые горячие с эффективной температурой более 25000К и имеют бело-голубой цвет, M – самые холодные с эффективной температурой менее 3500К и имеют красный цвет. К примеру, Солнце имеет класс G2 с эффективной температурой около 5700К. Спектральный класс связан с классом светимости звезды, обозначается римскими цифрами от Ia и Ib (сверхгиганты) до VII (белые карлики). Связь эту можно проследить на диаграмме Герцшпрунга – Ресселла . Также эта диаграмма может показывать зависимость между цветом или температурой звезды и ее абсолютной звёздной величиной.

Рождение звезд

Солнце, Луна, планеты и звезды известны людям с древнейших времен. Но осознать тот факт, что звезды более или менее похожи на Солнце, только значительно дальше отстоят от Земли, удалось лишь благодаря тысячелетнему развитию науки. Теперь мы знаем: звезды - это плазменные шары, находящиеся в состоянии устойчивого равновесия, излучение которых поддерживается внутренним источником энергии. Но источник этот не вечен, и постепенно истощается. Чем это чревато для звезд? Какие изменения ждут их?

Век даже самой короткоживущей звезды многократно превышает эру существования человечества. Поэтому проследить путь какой-либо звезды от ее рождения до смерти просто невозможно. Астрономы собирают сведения о космических объектах и их судьбах по крупицам - с помощью телескопов, установленных на Земле и вынесенных на дальние орбиты. И все же рассказывают о себе звезды скупо. Многие из них ведут себя спокойно, однако есть и такие, чья жизнь полна неожиданностей: они то разгораются, то меркнут, то увеличиваются, то уменьшаются, случается, что и взрываются - тогда их яркость буквально на глазах возрастает в десятки, сотни раз. Не так давно были открыты пульсары, излучающие энергию короткими вспышками...

Чем объяснить такое разнообразие светил? Не каприз ли это природы - обилие совершенно не похожих друг на друга космических объектов? Или все это разные их формы, соответствующие разным стадиям жизни звезд?

Рождение звезды, как правило, скрыто завесой из космической пыли, поглощающей свет. Только с появлением инфракрасной (ИК) фотометрии и радиоастрономии стали доступны изучению явления в газопылевых комплексах, имеющих, по всей вероятности, отношение к рождению звезд. Исследователи выделили области, где большинство составляют молодые формирующиеся объекты - протозвезды. Основную часть своей жизни они скрыты медленно оседающей на них пылевой оболочкой. Она «гасит» излучение ядра, нагревается до сотен градусов и в соответствии с этой температурой излучает сама. Именно это излучение и удается наблюдать в ИК-диапазоне, и это едва ли не единственный способ обнаружения протозвезд.

В 1967 году в Туманности Ориона была обнаружена инфракрасная звезда (с температурой излучения 700 градусов Кельвина), примерно в тысячу раз превосходящая Солнце по светимости и диаметру. Это открытие положило начало изучению целого класса протозвездных объектов.

В дальнейшем выяснилось, что в областях Млечного Пути (это наша Галактика), где рождение звезд представляется наиболее вероятным, существуют компактные источники, излучающие не только в инфракрасном, но и в радиодиапазоне. Это обнадеживало, ведь радиосигналы, в отличие от других частот, не искажаются поглощающими массами пыли. Информация, собранная радиотелескопами, позволила астрономам утверждать: Туманность Ориона, насыщенная объектами, совершенно невидимыми в оптическом диапазоне, представляет собой одну из «фабрик по производству звезд».

Предполагается, что сложный процесс формирования звезд может происходить в любом газопылевом облаке достаточно большого размера. Спусковым механизмом для начала формирования звезды может служить, например, ударная волна - своеобразное эхо далекого взрыва сверхновой. Такая волна нарушает зыбкое равновесие - облако разделяется на фрагменты, каждый из которых начинает сжиматься. Скорость сжатия газа зависит от плотности материи и наличия магнитного поля. Это - самый первый отрезок на пути образования звезд.

Должны пройти миллионы лет, прежде чем в недрах формирующегося объекта создадутся условия, необходимые для запуска первых ядерных реакций. Именно тогда и наступит «день рождения» звезды. Однако потребуются еще миллионы лет на то, чтобы она накопила энергию и высвободилась из окружающего ее пылевого кокона. Подтверждением описанного процесса образования светил из межзвездной среды служат обширные скопления - ассоциации массивных горячих звезд высокой светимости.

Для 90% звезд, так же как и для Солнца, источником энергии являются термоядерные реакции, а именно превращение водорода в гелий. Солнце, которому уже 4,5 миллиарда лет, достаточно стабильно: размеры, масса и температура поверхности практически не меняются.

Астрономы, следящие за характеристиками нашего светила, приходят к выводу: энергии, производимой в недрах Солнца, хватит на то, чтобы еще очень долго поддерживать постоянное излучение. Но запасы водорода предельны, и когда они заканчиваются, в жизни звезд начинается другая фаза.

Старение и смерть звезд

В звездах разной массы процесс старения будет идти по-разному. В тех, чья масса равна одной-двум солнечным, образуется гелиевое ядро. На его поверхности в тонком сферическом слое продолжается горение водорода, обеспечивающее светимость звезды. Внешние ее области начинают расширяться, и поверхностная температура уменьшается. По мере выгорания водорода гелиевое ядро сжимается, плотность его растет, температура повышается, но массы звезды недостаточно, чтобы обеспечить в ядре температуру, достаточную для горения. И в какой-то момент, хотя водород еще есть, его горение прекращается. Ядро теряет способность удерживать расширяющуюся оболочку, и постепенно начинается их разделение.

Планетарная туманность представляет собой газовую оболочку, в центре которой располагается звезда с достаточно высокой температурой. Оболочка - это наружная часть атмосферы бывшего красного гиганта, а центральная звезда - его ядро, оставшееся после отделения атмосферы. Газ оболочки светится под воздействием ионизующего излучения звезды. В процессе эволюции оболочка расширяется со скоростью от 10 до 50 километров в секунду, звезда сжимается, а температура ее растет. Так, в конце концов, в центре каждой планетарной туманности образуется белый карлик - компактная звезда с температурой порядка 100 000 градусов Кельвина.

По предсказаниям теоретиков, судьба более массивных звезд может оказаться весьма драматичной. Так, в звездах, превосходящих по массе Солнце в десять раз, превращение водорода в гелий происходит очень быстро, затем наступает следующий этап - гелий превращается в углерод, а атомы углерода образуют более тяжелые элементы. Реакции идут непрерывно, но постепенно сходят на нет, когда образуется железо. На этой стадии ядро звезды состоит из ионов железа.

Устойчивость звезды определяется равновесием между силами гравитации и давления нагретого газа, которое обеспечивается электронами. Но ядра железа могут захватывать электроны из окружающего газа, давление уменьшается, и сила тяжести берет верх. Постепенно все вещество в центре звезды оказывается состоящим из нейтронов. При достижении критического значения наступает коллапс - необратимое, практически мгновенное сжатие. При этом выделяется огромное количество энергии, внешняя оболочка звезды взрывается, разлетаясь в пространстве и обнажая центральное ядро - нейтронную звезду. Происходит взрыв сверхновой. (Результатом такого взрыва, наблюдавшегося на Земле в 1054 году, стала так называемая Крабовидная туманность.)

В наше время существование нейтронных звезд и их связь со вспышками сверхновых не вызывают сомнений. А в 1932 году гипотеза советского физика Л.Д. Ландау об образования подобных космических объектов воспринималась как чисто теоретическая абстракция.

Говоря о смерти звезд, нельзя не упомянуть и о черных дырах. Теоретически представляется возможным, что к концу своего существования звезда имеет массу слишком большую, чтобы стать белым карликом или стабильной нейтронной звездой, а потому ее остатки коллапсируются в черную дыру - объект, обладающий мощным гравитационным полем и не дающий вырваться наружу никакому излучению.

Умирающие звезды превращаются в компактные объекты, выбрасывающие в пространство часть своей массы и обеспечивающие тем самым рождение следующих звездных поколений.

Эволюция звезд

Звёзды зарождаются в газопылевых облаках межзвездной среды благодаря сгусткам вещества, образующихся в результате внешних возмущений, например, после взрыва сверхновых. Вещество под действием гравитационных сил начинает уплотняться и нагреваться. При достижении определенной массы протозвезды температура достигает того значения, при котором начинаются ядерные реакции. Продолжительность этого процесса зависит от массы. У звёзд массы Солнца на это уходит до 30 млн. лет, тогда как у более массивных в сто раз меньше. Нужно заметить, что у звёзд с большей массой все процессы идут намного быстрее, чем у менее массивных. Последующий этап жизни звезды проходит без заметных внешних изменений довольно продолжительный срок (около 10 млрд. лет у таких звёзд как Солнце, и не более 0,5 млрд. лет у в несколько раз большей массой). В этот период идет процесс сжигания водорода в ядре звезды. При этом яркость и размер остаются постоянными, так как гравитационные силы уравновешиваются давлением газа внутри звезды. Параметры звезды в этот период определяются одной из точек так называемой главной последовательности на диаграмме Герцшпрунга – Ресселла.

По мере того как весь водород в ядре будет превращаться в гелий оно будет сжиматься, и нагреваться, вследствие увеличения молекулярного веса. Под действием увеличившейся температуры, окружающий ядро газ расширится, и звезда значительно увеличит свои размеры, прилегающий к внешним слоям газ остынет, звезда станет красным гигантом, светимость которого останется примерно такой же из-за значительных размеров. Большие размеры звезды приведут к большой потери энергии, в результате чего она со временем опять может уменьшиться. На этом этапе на диаграмме Герцшпрунга – Ресселла звезда перемещается по одному из так называемых эволюционных треков . При возникновении внутренней нестабильности во время расширения внешние слои звезды отделяются, образуется планетарная туманность , видимая в мощные телескопы похожей на диски планет.Оставшееся ядро становится белым карликом и будет постепенно остывать. Несмотря на значительную температуру, светимость белых карликов низкая из-за небольших размеров, сопоставимых с размером Земли. Максимально возможная масса таких звёзд не превышает 1,4 от солнечной массы.

Все вышесказанное справедливо для звёзд массы Солнца. Если же масса звезды превышает солнечную не менее чем в 8 раз, конечные этапы ее эволюции несколько отличаются. Так, после того как весь водород в ядре превратиться в гелий, ядро сожмется, а температура внутри него повысится до такой степени, что начнется не только сжигание водорода практически во всем объеме звезды, но и превращение гелия в более тяжелые элементы, такие как углерод и кислород, а потом и в кремний. Температура ядра при этом может достигать нескольких сотен млн. кельвинов. В какой-то момент времени все топливо будет израсходовано, ядро станет железным, система станет нестабильной и звезда в течение долей секунды сожмется. Сжатие будет происходить до тех пор, пока плотность не достигнет критического уровня, после чего произойдет отдача, сопровождаемая гигантским взрывом, наблюдаемым как взрыв сверхновой (лат. super nova).

Яркость вспышки при взрыве сверхновой может превосходить яркость целой галактики, а светимость в миллиарды раз выше солнечной. Выброс оболочки происходит со скоростью в несколько тысяч км/с. Наблюдаемая вспышка заметна в течение нескольких недель. Вообще же, взрыв сверхновой – крайне редкое явление, которое можно наблюдать без соответствующего оборудования всего несколько раз за тысячелетие. Пример - сверхновая 1987А, наблюдаемая с февраля 1987 года в галактике Большое Магелланово Облако в южном созвездии Золотой Рыбы на расстоянии 170 тысяч световых лет.

Оставшееся после взрыва ядро превращается в нейтронную звезду с массой от 1,5 до 3 масс Солнца и диаметром несколько км. Из-за сильного магнитного поля и быстрого вращения нейтронные звёзды наблюдаются как всплески радио- и рентгеновского излучения, их иногда называют еще пульсарами . Если масса оставшегося ядра превысила 3 солнечных массы, то звезда становится чёрной дырой . Гравитационные силы черной дыры столь значительны, что они поглощают любое световое излучение, и непосредственное наблюдение этих объектов с использованием оптических средств невозможно. Выпадение вещества на чёрные дыры сопровождается выделением огромной энергии, которое можно обнаружить в виде рентгеновского и гамма-излучения. В таких областях в условиях гравитации стремящейся к бесконечности все наши представления о пространстве и времени, очевидно, не смогут найти подтверждения, а сами области, возможно, могут представлять собой некие пространственные дыры, сквозь которые возможно проникновение в другие области Вселенной или Антивселенной, в которых составляющая силы гравитации по отношению к нашим представлениям будет иметь отрицательное значение. Но возможно, что чёрные дыры - это пространственно-энергетические ловушки, которые после достижения ими определённой критической массы и энергии вызовут грандиозный вселенский катаклизм при выделении накопленной энергии. Предполагается, что в центрах многих галактик имеются чёрные дыры, в том числе и в нашей.

Двойные звёзды

Во Вселенной примерно половина всех звёзд входит в состав двойных или кратных систем. В них звёзды вращаются вокруг общего центра масс. Визуально-двойные звезды расположены достаточно далеко друг от друга и могут наблюдаться отдельно, период их обращения составляет несколько десятков лет. Если одна звезда значительно меньше другой и не доступна для непосредственного наблюдения, то ее присутствие можно обнаружить по непрямолинейному движению более яркой. Обычно же двойные системы обнаруживаются по периодическому смещению спектральных линий. Большая часть двойных звёзд являются тесными парами. В таких системах возможно перетекание вещества из поверхностных слоев массивной звезды к компаньону. Вещество под действием гравитационных сил вращающейся малой звезды закручивается вокруг нее, и образуется так называемый аккреционный диск. Большая звезда при этом может потерять значительную массу и превратиться даже в белого карлика. Иногда такие процессы приводят к образованию новых (лат. nova), когда происходит значительный нагрев звезды и последующая вспышка, сопровождаемая выбросом оболочки со скоростью до 2 тысяч км/с и увеличением звёздной величины в несколько раз (до 10 - 15), но, конечно же, даже близко не сопоставимой со взрывом сверхновой. Этот процесс может происходить неоднократно с образованием повторных новых, а также новоподобных с менее значительным увеличением звёздной величины.

Также с двойными звёздами напрямую связано такое понятие как переменная звезда. Хотя нужно отметить, что и к одиночным звездам, преимущественно на поздних стадиях эволюции, в полной мере может подходить это определение (пример: цефеиды, по аналогии с Дельта Цефея, когда светимость увеличивается, а затем уменьшается почти на целую звездную величину в течение нескольких дней), всё же, чаще всего оно применимо к двойным или кратным системам. Выражается это в периодическом изменении светимости звезды, связанном в первую очередь с неоднородностью ее внутренней структуры и стадии эволюционного развития, а также влиянием на нее звезды-компаньона. Так в затменных двойных вращение пары происходит таким образом, что одна звезда периодически проходит перед другой относительно наблюдателя, что приводит к изменению видимой светимости. Наиболее яркий пример: Алголь – Бета Персея, расстояние 92,8 св. года, состоящая из гиганта класса B и карлика класса G, между которыми происходит передача вещества, а также третьей звезды. Видимая светимость в этой системе изменяется от 3,5 до 2,2 звёздной величины с периодом около трех суток. Вообще же периодичность изменений в двойных и кратных системах может наблюдаться от нескольких суток до нескольких месяцев, а изменение светимости до нескольких звёздных величин, хотя обычно светимость изменяется в гораздо более.

Заключение

Наше Солнце – самая обычная звезда среди миллионов других звезд. В центре всех звезд частицы газа и водорода ударяются друг о друга и выделяют огромное количество ядерной энергии. Благодаря этому звезды так ярко сияют. Звезды несутся сквозь космическое пространство с колоссальными скоростями, но нам они кажутся неподвижными – это тоже следствие их невероятной удаленности от нас.

Звезды возникают постоянно. Сначала это просто облака газа и пыли в космическом пространстве. Как только подобные сгустки вещества начинают собираться вместе, возникающая сила притяжения усиливает этот процесс. В центре такого образования газ становиться все горячее и плотнее, и, в конце концов, его температура и давление повышаются настолько сильно, что начинается процесс ядерного синтеза. Его начало знаменует собой рождение новой звезды. Нередко множество звезд возникает вблизи друг от друга, в гигантском облаке.

И все-таки звезды не живут вечно. В конце концов, водородное топливо в их ядрах исчерпывается. Когда это происходит, звезда изменяется и постепенно умирает. Старые звезды раздуваются, превращаясь в красные гиганты. Они могут развеять часть своего газа в пространстве в виде большого туманного кольца. Звезды значительно более массивные, чем Солнце, заканчивают свое существование грандиозным взрывом- сверхновой. Когда такая звезда появляется, она за несколько дней излучает света в миллион раз больше, чем Солнце. За последние 1000 лет в нашей Галактике было надежно зафиксировано появление всего лишь трех сверхновых.

Благодаря развитию наблюдательных технологий астрономы получили возможность исследовать не только видимое, но и не видимое глазу излучение звёзд. Сейчас уже многое известно об их строении и эволюции, хотя немало остаётся и непонятного.

Список литературы

Источников энергии и механизмов эволюции звезд , звездных... эмпирические зависимости между параметрами звезд (диаграмма Герцшпрунга-Рессела... уточнялись и усложнялись сами фундаментальные понятия , фигурирующие в космологии: ...

  • Звезды и их эволюция (3)

    Реферат >> Биология

    Ураном; полученная на основании измерения параметров орбиты масса Сириуса А оказалась в... , удерживающая звезду от коллапса. Своим внутренним строением звезда теперь напоминает... И этот незначительный по космическим понятиям объём «набит» таким количеством...

  • Философия. Философские понятия , категории и глобальные проблемы

    Шпаргалка >> Философия

    И ученого. 24. Понятие материи Современная наука о строении материи Движение ... , гравитационными полями, образуют звезды , представляющие особый уровень организации... в соответствии с обозначенными восемью параметрами , можно описать следующим образом. ...

  • Физика солнца и звезд

    Реферат >> Астрономия

    Перпендикулярный направлению на звезду . С понятием параллакса связано название одной... доли процента. Строение звезд . Модели некоторых типов звезд . Строение звёзд зависит от... , является наиболее изученной звездой . По всем параметрам Солнце – самая обычная...

  • Человечество усиленно изучает все, что находится вокруг нас, особенно это касается космического пространства. Звезды на небе привлекают своей красотой и таинственностью, ведь до них так далеко. Ученые и исследователи уже собрали достаточно много информации о звездах, поэтому в этой статье хотелось бы выделить самые интересные факты о звездах.

    1. Какая звезда самая ближайшая к земле? Это солнце. Оно расположено всего лишь в 150 млн. км от Земли, и по космическим меркам является средней звездой. Классифицируется как желтый карлик G2 главной последовательности. Оно преобразовывает водород в гелий вот уже 4,5 миллиарда лет, и, вероятно, продолжит это делать в течение еще 7 миллиарда лет. Когда у солнца закончится топливо, оно станет красной гигантской звездой, размеры звезды увеличатся во много раз. Когда оно расширится, то поглотит Меркурий, Венеру, и возможно даже Землю.

    2. Все звезды имеют одинаковый состав. Рождение звезды начинается в облаке холодного молекулярного водорода, которое начинает гравитационно сжиматься. Когда облако молекулярного водорода сжимается фрагментировано, то множество из этих частей сформируются в отдельные звезды. Материал собирается в шар, который продолжает сжиматься под действием собственной гравитации, пока в центре не достигнет температура способная зажечь ядерный синтез. Исходный газ был сформирован еще во время Большого Взрыва и состоит из 74% водорода и 25% гелия. Со временем, она преобразуют часть водорода в гелий. Вот почему у нашего Солнца состав 70% водорода и 29% гелия. Но первоначально они состоят из 3/4 водорода и 1/4 гелия, с примесями других микроэлементов.

    3. Звезды находятся в идеальном балансе. Любая звезда как бы находится в постоянном конфликте сама с собой. С одной стороны, вся масса звезды своей силой тяжести постоянно сжимает ее. Но раскаленный газ, оказывает изнутри огромное давление, нарушая ее гравитационный коллапс. Ядерный синтез в ядре, генерирует огромное количество энергии. Фотоны, прежде чем вырваться наружу, совершают путешествие из центра до поверхности, примерно за 100.000 лет. Когда звезда становится ярче, она расширяется и превращается в красного гиганта. Когда ядерный синтез в центре прекращается, то уже ничего не может сдержать нарастающее давление вышележащих слоев и она разрушается превращаясь в белый карлик, нейтронную звезду или черную дыру. Возможно, что звезды на небе, которые мы видим, уже не существуют, потому как они находятся очень далеко и их свету требуются миллиарды лет, чтобы долететь до земли.

    4. Большинство звезд являются красными карликами. Сравнивая все известные звезды, можно утверждать, что больше всего красных карликов. Они имеют менее чем 50% от массы Солнца, а красные карлики могут весить даже 7,5%. Ниже этой массы, гравитационное давление не сможет сжать газ в центре, для начала ядерного синтеза. Их называются коричневыми карликами. Красные карлики выделяют менее чем 1/10, 000 энергии Солнца, и могут гореть десятки миллиардов лет.

    5. Масса равна ее температуре и цвету. Цвет звезд может варьировать от красного до белого или голубого. Красный цвет соответствует самым холодным с температурой менее 3500 градусов Кельвина. Наше светило является желтовато-белыми, со средней температурой около 6000 Кельвин. Самые горячие - голубые, с температурой поверхности выше 12000 градусов Кельвина. Таким образом, температура и цвет связаны между собой. Масса определяет температуру. Чем больше масса, тем больше будет ядро и тем более активный ядерный синтез будет происходить. Это означает, что больше энергии достигает ее поверхности и повышает ее температуру. Но есть исключение, это красные гиганты. Типичный красный гигант может иметь массу нашего Солнца, и быть белой звездой на протяжении всей жизни. Но по мере приближения к концу своей жизни, она увеличивается и светимость возрастает в 1000 раз и кажется неестественно яркой. Голубые гиганты - это просто большие, массивные и горячие светила.

    6. Большинство из звезд являются двойными. Многие звезды рождаются парами. Это двойные звезды, где два светила вращаются по орбите вокруг общего центра тяжести. Есть и другие системы с 3, 4 и даже большим количеством участников. Только подумайте, какие красивые восходы можно увидеть на планете в четырех-звездной системе.

    7. Размер самых больших солнц, равен орбите Сатурна. Давайте поговорим о красных гигантах, или если быть точнее, о красных сверхгигантах, на фоне которых наше светило выглядит совсем небольшим. Красным сверхгигантом является Бетельгейзе, в созвездии Ориона. Она в 20 раз превышает массу Солнца и при этом в 1000 раз больше. Крупнейшая известная звезда это VY Большого Пса. Она в 1800 раз больше нашего Солнца и уместилась бы в орбиту Сатурна!

    Впрочем, к нашему времени самая большая звезда во вселенной уже успела потерять больше половины своей массы. То есть звезда стареет и ее топливо из водорода уже на исходе. Внешняя часть VY стала больше из-за того, что гравитация уже не может предупредить потерю веса. Ученые говорят, что когда топливо звезды иссякнет, то она, скорее всего, взорвется сверхновой и превратиться в нейтронную звезду или черную дыру. Согласно наблюдениям, звезда теряет свою яркость, начиная с 1850 года.
    В наше время, изучение Вселенной ученые не оставляют ни на минуту. Поэтому этот рекорд был побит. Астрономы нашли в просторах космоса еще большую звезду. Открытие сделала группа британских ученых во главе с Полом Кроутером в конце лета 2010 года. Исследователи изучали Большое Магелланово Облако и нашли звезду R136a1. Невероятное открытие помог сделать космический телескоп НАСА «Хаббл».

    8. У наиболее массивных светил очень короткая жизнь. Как сказано выше, низкой массы красного карлика может хватить на десятки миллиардов лет горения, прежде чем, закончится топливо. Верно и обратное, для самых массивных, которые мы знаем. Гигантские светила могут в 150 раз превышать массу Солнца и выделять огромное количество энергии. Например, одна из самых массивных звезд, которую мы знаем, это Эта Киля, расположена примерно в 8000 световых годах от Земли. Она выделяет в 4 миллиона раз больше энергии чем Солнце. В то время, как наше Солнце может спокойно сжигать топливо на протяжении миллиардов лет, Эта Киля, может светить только несколько миллионов лет. И астрономы ожидают, что Эта Киля, может взорваться в любое время. Когда она погаснет, то станет самым ярким объектом на небе.

    9. Количество звезд огромно. Сколько звезд есть в Млечном Пути? Вы можете удивиться узнав, что есть порядка 200-400 миллиардов штук в нашей галактике. Каждая, возможно имеет планеты, а на некоторых, возможна жизнь. Во Вселенной около 500 миллиардов галактик, каждая из которых может иметь столько же или даже больше, чем Млечный Путь. Умножьте эти два числа вместе, и вы увидите, сколько их приблизительно существует.

    10. Они находятся очень, очень далеко. Ближайшая к Земле (исключая Солнце) это Проксима Центавра, расположена в 4,2 световых годах от Земли. Другими словами, он принимает сам свет более 4 лет, чтобы завершить путешествие от Земли. Если мы запустим самый быстрый космический корабль из когда-либо ранее запущенных с Земли, он будет лететь до нее более 70000 лет. На сегодняшний день путешествовать между звездами просто не возможно.

    > Звезды

    Вся информация про звезды для детей: описание с фото и видео, интересные факты, как рождаются и умирают звезды, типы, белый карлик, сверхновая, черная дыра.

    Падающая звезда детям и взрослым кажется невероятно красивым и волшебным событием, когда можно загадать желание. Однако реальные звезды выглядят еще более интересными объектами Вселенной, ведь перед нами гигантские шары бурлящего газа с высокими температурами. Более того, их смерть - всего лишь новый этап жизни в виде еще более загадочных объектов, вроде черных дыр или нейтронных звезд. Ниже вы узнаете описание, характеристику и самые интересные факты о звездах с фото, картинками, рисунками, видео и схемами вращения вокруг центра галактики.

    Родители или учителя в школе могут начать объяснение для детей с того, что это не просто наиболее распространенные объекты во Вселенной, но и главные галактические строительные блоки. При помощи возраста, состава и распределения можно понять, историческую динамику и эволюцию конкретной галактики. Также дети должны знать, что звезды отвечают за создание и распределение тяжелых элементов (углерод, кислород и азот), поэтому их характеристики напоминают планетарные.

    Звездообразование - объяснение для детей

    Важно объяснить детям , что звезды рождаются из пыльных и газовых облаков, после чего рассеиваются по галактикам. Например, можно вспомнить туманность Ориона. Итак, глубоко в этих облаках таится сильная турбулентность, которая создает массивные узлы, заставляющие пыль и газ разрушаться из-за своей же силы тяжести. Когда все облако начинает рушиться, материал в самом центре разогревается и превращается в протозвезду. Это горячее ядро в центре вскоре и станет звездой.

    Чтобы объяснение для детей стало понятным, компьютерные модели демонстрируют интересную вещь. Во время процесса разрушения облака могут разделиться на две или три капли. Именно поэтому большая часть звезд группируется в пары или скопления.

    Но не весь собранный горячим ядром материал становится частью звезды. Он может сформировать планеты, астероиды, кометы или же так и остаться пылью. В некоторых случаях облако может и не разрушаться устойчивыми темпами. В 2004 году астроному-любителю Джеймсу Макнейлу удалось заметить небольшую туманность, которая внезапно возникла возле туманности М78 в созвездии Ориона. Когда об этом узнали остальные астрономы, то поняли, что ее яркость менялась. Осмотр рентгеновской обсерваторией Чандра дал понять, что магнитное поле взаимодействует с окружающим газом, что и приводит к эпизодическому увеличению яркости.

    Почему зажигаются звезды?

    Мультфильм о рождении звезд, шаровых скоплениях и будущем Млечного Пути:

    Звезды главной последовательности - объяснение для детей

    Для самых маленьких важно осознать, что звезде с солнечным размером понадобится примерно 50 миллионов лет, что пройти весь период от коллапса и до взрослого возраста. Наше Солнце перейдет в момент зрелости примерно через 10 миллиардов лет.

    Звезды также питаются, правда в качестве пищи используют ядерный синтез водорода с образованием гелия внутри себя. Из центральной области постоянно поступает энергетический поток, формирующий давление. Дети должны понять, что оно необходимо для того, чтобы звезда не разрушилась от тяжести собственного веса и энергии.

    Звезды главной последовательности охватывают большое разнообразие яркости и цветов. Их даже можно классифицировать по этим характеристикам. Наименьшие называют красными карликами. Они достигают лишь 10% солнечной массы и выпускают 0.01% энергии при температуре в 3000-4000 К. Несмотря на такую миниатюрность, они превосходят остальные виды по количеству и существуют десятки миллиардов лет.

    Типы звезд - объяснение для детей

    Красные карлики

    В состав красных карликов входят Проксима Центавра, Глизе 581 и Звезда Бернарда. Важно объяснить детям , что это наименьшие звезды главной последовательности. В них не так много тепла, чтобы подкреплять реакции ядерного синтеза, которые используют водород. Но дети должны запомнить, что этот тип встречается чаще всего, потому что обладает длительным сроком существования, который даже превышает возраст самой Вселенной (13.8 млрд. лет). Причина в медленности слияния и эффективной циркуляции водорода из-за конвективного переноса тепла.

    Желтые карлики

    К желтым карликам относятся Солнце, Кеплер-22 и Альфа Центавра А. Сейчас эти звезды пребывают в расцвете сил, потому что продолжают активно сжигать водород в своем ядре. Этот процесс переводит их к следующему этапу, в котором пребывает большая часть звезд. Наименование «желтый карлик» не совсем отвечает действительности, так как большинство из них, на самом деле, белые. Но, если смотреть сквозь фильтр земной атмосферы, то кажутся желтыми.

    Голубые гиганты

    Это крупные звезды, в которых заметен синий окрас. Хотя определения могут быть разными. Дело в том, что лишь 0.7% звезд оказываются в этой категории. Не все голубые сверхгиганты – звезды главной последовательности. Наибольшие (О-тип) очень быстро сгорают, из-за чего внешние слои начинают расширяться и увеличивать яркость. Наличие высокой температуры обеспечивает им длительный голубой окрас. Но по мере охлаждения могут стать красными гигантами, сверхгигантами или гипергигантами.

    Синие сверхгиганты с 30 солнечными массами могут создавать огромнейшие пробоины во внешних слоях, демонстрируя раскаленное ядро. Их называют звездами Вольфа-Райе. Скорее всего, им суждено взорваться в сверхновой, прежде чем потерять температуру и перейти на более позднюю стадию развития (красный сверхгигант). Звездный остаток после сверхновой превратится в нейтронную звезду или черную дыру.

    Гиганты

    Сюда входят Арктур и Альдебаран. Они расположены в конце эволюционной шкалы. Раньше были звездами главной последовательности (как Солнце). Если звезда меньше чем 0.3-10 солнечной массы, то ей не стать красным гигантом. Дело в том, что конвективный перенос тепла не позволит набрать достаточную плотность, чтобы высвобождать тепло, которое нужно для расширения. Крупные звезды становятся красными сверхгигантами или гипергигантами.

    Красные гиганты накапливают гелий, что приводит к сжатию ядра и повышению внутреннего нагрева. Водород сливается во внешних слоях, а звезда увеличивается в размерах и светит еще ярче. Так как площадь поверхности увеличилась, то температура становится ниже. В конце концов, внешние слои разрушаются, образовывая планетарную туманность, и остается белый карлик.

    Супергиганты

    В этой категории дети и родители увидят Антарес и Бетельгейзе. NML Лебедя в 1650 раз больше Солнца и является крупнейшей звездой во Вселенной. Расположена на удаленности в 5300 световых лет от нас.

    Эти звезды раздуваются из-за сокращения в ядрах, но чаще всего они перерастают в голубых гигантов и сверхгигантов с 10-40 солнечными массами. Если масса больше, то они быстро разрушают внешние слои и становятся звездами Вольфа-Райе или же сверхновыми. Красные гиганты в итоге уничтожают себя в сверхновой, оставляя нейтронную звезду или черную дыру.

    Наиболее крупные – супергиганты. Они в 100 раз превосходят Солнце, а их температура нагревается до 30000К. Энергетическое излучение также превосходит солнечное в сотни тысяч раз, но живут всего лишь пару миллионов лет. Хотя они и были распространены во времена ранней Вселенной, но сейчас это редкое явление. В нашей галактике их всего несколько.

    Звезды и их судьба - объяснение для детей

    Для самых маленьких , наверное, уже стало ясно, что чем больше звезда, тем меньше она проживет. Смерть наступает в момент, когда сжигает весь запас внутреннего водорода. Без необходимой энергии она запускает процесс разрушения и светит ярче. Это сияет водород, который все еще доступен в оболочке вокруг ядра. Разгорячившееся ядро выталкивает наружные слои, заставляя объект раздуваться и терять температуру. После чего мы видим красного гиганта.

    Если звезда была массивной, то ядро нагревается до таких критических температур, что начинает воспроизводить тяжелые элементы (даже железо). Но это не спасает, а лишь оттягивает неизбежное. Вскоре она сгорает, продолжая пульсировать, сбрасывать внешние слои и окутывать себя газовой и пыльной дымкой. Последующие процессы уже зависят от размера ядра.

    Как умирают звезды?

    Мультфильм об эволюции звезд, Главной последовательности и судьбах красных гигантов:

    Средние звезды – белые карлики

    Для таких звезд (наше Солнце) процесс избавления от внешних слоев продолжается до того момента, как не откроется ядро. Это уже мертвый, но все еще опасный и активный горячий шар, который называют белым карликом. Их размеры обычно достигают земного, хотя весят все равно как звезда. Но почему они не рухнули? Все дело в квантовой механике.

    От разрушения звезду удерживают быстро движущиеся электроны, создающие давление. Чем массивнее ядро, тем плотнее будет белый карлик (меньший диаметр – большая масса). Дети должны знать, что через несколько миллиардов лет наше Солнце также перейдет в стадию белого карлика. Он просуществует, пока не остынет. Эта судьба подготовлена тем звездам, которые примерно в 1.4 раза превышают солнечную массу. Если же она будет больше, то давление не удержит ядро от коллапса.

    Белый карлик может стать сверхновой - объяснение для детей

    Если белый карлик расположен в двоичной или же в многократной звездной системе, то переживет более насыщенные процессы. Новыми когда-то просто называли новые звезды. Но если быть конкретными, то это старые звезды, превратившиеся в белые карлики. Если он расположен близко к «звездному товарищу», то может начать воровать водород из внешних слоев несчастного. Как только соберется достаточное количество водорода, происходит взрыв ядерного синтеза, и белый карлик убирает оставшийся материал и светится ярче. Это длится несколько дней, после чего начинается повторный цикл тех же операций. Если карлик большой, то может набрать столько массы, что разрушится и полностью восстановится в виде сверхновой.

    Сверхновые обходят нейтронные звезды или черные дыры

    Если звезда достигла массы больше восьми солнечных, то обречена погибнуть и стать сверхновой. Важно объяснить детям , что это не просто рождение новой звезды. В предыдущей полностью взрывается ядро, что порождает образование железа. Когда оно появляется, то это означает, что звезда отдала всю энергию (более тяжелые элементы будут ее поглощать). У объекта больше нет возможности поддерживать свою массу, и железное ядро рушится. Проходит всего пара секунд, а ядро резко уменьшается, увеличивая температуру на миллион градусов и больше.

    Внешние слои разрушаются вместе с ядром, отскакивают и разлетаются в стороны. Сверхновая – это потрясающее зрелище, так как в этот момент выделяется колоссальное количество энергии. Ее так много, что она способна на недели затмить всю галактику! В среднем такие вспышки происходят раз в 100 лет. Каждый год можно найти 25-50 появившихся сверхновых, но они расположены так далеко, что без телескопа этого не увидишь.

    Нейтронные звезды - объяснение для детей

    Если ядро в центре сверхновой представляет 1.4-3 солнечных массы, то разрушение длится до тех пор, пока электроны и протоны не создадут нейтроны. Отсюда и начинается формирование нейтронной звезды. Это чрезвычайно плотные объекты с маленьким объемом, что порождает сильную гравитацию. Если она появилась в многократной звездной системе, то может собирать газ с соседних спутников.

    Поделиться